ON SETS CHARACTERIZING ADDITIVE AND MULTIPLICATIVE ARITHMETICAL FUNCTIONS

BY

KARL-HEINZ INDLEKOFER¹

1. Introduction

A function $f: \mathbf{N} \to \mathbf{C}$ is called *additive* if

(1)
$$f(mn) = f(m) + f(n)$$

for all coprime $m, n \in \mathbb{N}$. If (1) holds for all pairs of integers $m, n \in \mathbb{N}$, we say that f is completely additive. A function $g: \mathbb{N} \to \mathbb{C}$ is called *multiplicative* (resp. completely multiplicative) if

$$(1') g(mn) = g(m)g(n)$$

for all coprime $m, n \in \mathbb{N}$ (resp. for all $m, n \in \mathbb{N}$).

Because of the canonical representation

(2)
$$n = \prod_{p \text{ prime}} p^{\alpha_p} \quad \text{with} \quad p^{\alpha_p} || n$$

of the integers $n \in \mathbb{N}$ we have $f(n) = \sum_{p \text{ prime}} f(p^{\alpha_p})$ (resp. $g(n) = \prod_{p \text{ prime}} g(p^{\alpha_p})$). An additive f can be extended uniquely to an "additive" function $f^*: \mathbb{Q}^+ \to \mathbb{C}$, where $\mathbb{Q}^+ = \{a/b: (a, b) = 1; a, b \in \mathbb{N}\}$, by $f^*(a/b) = f(a) - f(b)$. In a similar manner we get an extension g^* of a multiplicative function g by $g^*(a/b) =$ g(a)/g(b) in case $g(b) \neq 0$ for all $b \in \mathbb{N}$. In the following we denote by \mathfrak{A} the set of all additive $f: \mathbb{Q}^+ \to \mathbb{C}$ and by \mathfrak{M} the set of all multiplicative $g: \mathbb{Q}^+ \to \mathbb{C}$ with $g(b) \neq 0$ for all $b \in \mathbb{N}$. We write \mathfrak{A}_c (resp. \mathfrak{M}_c) for the subsets of completely additive (resp. completely multiplicative) functions in \mathfrak{A} (resp. \mathfrak{M}).

DEFINITIONS. Let $\mathscr{A} = \{a_n\} \subset \mathbf{Q}^+$. We say that \mathscr{A} is a

- (a) U-set for \mathfrak{A} in case $f \in \mathfrak{A}$, $f(\mathscr{A}) = \{0\}$ implies f = 0,
- (b) U-set for \mathfrak{M} in case $g \in \mathfrak{M}$, $g(\mathscr{A}) = \{1\}$ implies g = 1,
- (c) C-set for \mathfrak{A} in case $f \in \mathfrak{A}$, $\lim_{n \to \infty} f(a_n) = 0$ implies f = 0,
- (d) C-set for \mathfrak{M} in case $g \in \mathfrak{M}$, $\lim_{n \to \infty} g(a_n) = 1$ implies g = 1.

In an obvious manner U-sets and C-sets are defined for \mathfrak{A}_c (resp. \mathfrak{M}_c).

© 1981 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received May 21, 1979.

¹ Supported by a Fulbright grant.