ON SETS CHARACTERIZING ADDITIVE AND MULTIPLICATIVE ARITHMETICAL FUNCTIONS

BY
KARL-HEINZ INDLEKOFER ${ }^{1}$

1. Introduction

A function $f: \mathbf{N} \rightarrow \mathbf{C}$ is called additive if

$$
\begin{equation*}
f(m n)=f(m)+f(n) \tag{1}
\end{equation*}
$$

for all coprime $m, n \in \mathbf{N}$. If (1) holds for all pairs of integers $m, n \in \mathbf{N}$, we say that f is completely additive. A function $g: \mathbf{N} \rightarrow \mathbf{C}$ is called multiplicative (resp. completely multiplicative) if

$$
g(m n)=g(m) g(n)
$$

for all coprime $m, n \in \mathbf{N}$ (resp. for all $m, n \in \mathbf{N}$).
Because of the canonical representation

$$
\begin{equation*}
n=\prod_{p \text { prime }} p^{\alpha_{p}} \quad \text { with } \quad p^{\alpha_{p}} \| n \tag{2}
\end{equation*}
$$

of the integers $n \in \mathbf{N}$ we have $f(n)=\sum_{p \text { prime }} f\left(p^{\alpha_{p}}\right)\left(\right.$ resp. $\left.g(n)=\prod_{p \text { prime }} g\left(p^{\alpha}\right)\right)$. An additive f can be extended uniquely to an "additive" function $f^{*}: \mathbf{Q}^{+} \rightarrow \mathbf{C}$, where $\mathbf{Q}^{+}=\{a / b:(a, b)=1 ; a, b \in \mathbf{N}\}$, by $f^{*}(a / b)=f(a)-f(b)$. In a similar manner we get an extension g^{*} of a multiplicative function g by $g^{*}(a / b)=$ $g(a) / g(b)$ in case $g(b) \neq 0$ for all $b \in \mathbf{N}$. In the following we denote by ϑl the set of all additive $f: \mathbf{Q}^{+} \rightarrow \mathbf{C}$ and by $\mathfrak{M l}$ the set of all multiplicative $g: \mathbf{Q}^{+} \rightarrow \mathbf{C}$ with $g(b) \neq 0$ for all $b \in \mathbf{N}$. We write $\mathfrak{N l}_{c}\left(\right.$ resp. $\left.\mathfrak{M}_{c}\right)$ for the subsets of completely additive (resp. completely multiplicative) functions in \mathfrak{N} (resp. \mathfrak{M}).

Definitions. Let $\mathscr{A}=\left\{a_{n}\right\} \subset \mathbf{Q}^{+}$. We say that \mathscr{A} is a
(a) U-set for \mathfrak{M} in case $f \in \mathfrak{A l}, f(\mathscr{A})=\{0\}$ implies $f=0$,
(b) U-set for \mathfrak{M} in case $g \in \mathfrak{M}, g(\mathscr{A})=\{1\}$ implies $g=1$,
(c) C-set for $\mathfrak{A l}$ in case $f \in \mathfrak{Q l}, \lim _{n \rightarrow \infty} f\left(a_{n}\right)=0$ implies $f=0$,
(d) C-set for \mathfrak{M} in case $g \in \mathfrak{M}, \lim _{n \rightarrow \infty} g\left(a_{n}\right)=1$ implies $g=1$.

In an obvious manner U-sets and C-sets are defined for $\mathfrak{l l}_{c}$ (resp. \mathfrak{M}_{c}).
${ }^{1}$ Supported by a Fulbright grant.

