A NEW CHARACTERIZATION OF DIRICHLET TYPE SPACES AND APPLICATIONS

RICHARD ROCHBERG and ZHIJIAN WU

1. Introduction

Let D be the unit disk of the complex plane \mathbb{C} and $dA(z) = 1/\pi \, dx \, dy$ be the normalized Lebesgue measure on D. For $\alpha < 1$, let

$$dA_\alpha(z) = (2 - 2\alpha)(1 - |z|^2)^{1-2\alpha} \, dA(z).$$

The Sobolev space $L^{2,\alpha}$ is the Hilbert space of functions $u : D \to \mathbb{C}$, for which the norm

$$\|u\| = \left(\int_D |u| dA_\alpha(z) \right)^{1/2} + \int_\Delta (|\partial u/\partial z|^2 + |\partial u/\partial \bar{z}|^2) \, dA_\alpha(z)$$

is finite. The space D_α is the subspace of all analytic functions in $L^{2,\alpha}$. This scale of spaces includes the Dirichlet type spaces ($\alpha > 0$), the Hardy space ($\alpha = 0$) and the Bergman spaces ($\alpha < 0$). (The Hardy and Bergman spaces are usually described differently, however see Lemma 3 of Section 3.) Let

$$\hat{D}_\alpha = \{ g \in D_\alpha : g(0) = 0 \}$$

and let

$$\hat{P} = \{ g \text{ is a polynomial on } D : g(0) = 0 \}.$$

Clearly \hat{P} is dense in \hat{D}_α. Let P_α denote the orthogonal projection from $L^{2,\alpha}$ onto \hat{D}_α. For a function $f \in L^{2,\alpha}$ it is possible to define the (small) Hankel operator with symbol f, $h_f^{(\alpha)}$, on \hat{P} by (see also [W1])

$$h_f^{(\alpha)} = P_\alpha(fg).$$

Received May 7, 1991; revised February 14, 1992.
1991 Mathematics Subject Classification. Primary 31C25, 33A15, 45P05, 47B35.
1This work supported in part by a grant from the National Science Foundation.

© 1993 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America