SOME UNIQUENESS THEOREMS ON RIEMANNIAN MANIFOLDS
WITH BOUNDARY

BY
CHUAN-CHIH HIUNG

1. Introduction

Let M_n be a differentiable manifold of dimension n, and $X: M_n \rightarrow E_{n+m}$ a mapping of M_n into a Euclidean space E_{n+m} of dimension $n + m$ for any $m > 0$. M_n, or rather M_n together with the mapping X, is called an immersed submanifold of E_{n+m} if the functional matrix of X is of rank n everywhere. The submanifold M_n is said to be imbedded, if X is one-one, that is, if $X(P) = X(Q)$, $P, Q \in M_n$, implies that $P = Q$. In particular, when $m = 1$, an immersed (imbedded) submanifold M_n of the space E_{n+m} is called an immersed (imbedded) hypersurface. Throughout this paper all manifolds are supposed to be of class C^3, and the dimension of a manifold M_n is understood to be n.

Now let us consider an oriented immersed manifold M_n. Then to each point $P \in M_n$ there is a unique linear space N of dimension m normal to $X(M_n)$ at the point $X(P)$. For any unit normal vector $e_r(P)$ at the point $X(P)$ in the space N, we put

\begin{align*}
I &= dX \cdot dX, \\
II_r &= de_r \cdot dX, \\
III_r &= de_r \cdot de_r,
\end{align*}

where dX and de_r are vector-valued linear differential forms on M_n, and the dot denotes the scalar product of two vectors in the space E_{n+m}. The eigenvalues k_{r1}, \ldots, k_{rn} of II_r relative to I are called the principal curvatures of the manifold M_n associated with the unit normal vector $e_r(P)$. If the Gauss-Kronecker curvature $K_r = k_{r1} \cdots k_{rn}$ associated with the vector $e_r(P)$ is nonzero, the reciprocals $1/k_{r1}, \ldots, 1/k_{rn}$, called the radii of principal curvatures associated with the vector $e_r(P)$, are the eigenvalues of II_r relative to III_r, which is also positive definite due to the assumption $K_r \neq 0$. In this case we introduce the αth elementary symmetric function

\begin{equation}
(\alpha) P_{\alpha} = \sum 1/k_{r1} \cdots 1/k_{r\alpha} \quad (1 \leq \alpha \leq n).
\end{equation}

If M_n is a hypersurface, then at each point $X(P)$ of M_n there is only one unit normal vector e_r, and for P_{α} associated with it we shall simply write P_{α}.

Let M_n be a closed oriented Riemannian manifold immersed in a Euclidean space E_{n+m}. By a normal frame $xe_{n+1} \cdots e_{n+m}$ on the manifold M_n we mean a point X of the manifold M_n and an ordered set of mutually perpendicular unit vectors e_{n+1}, \ldots, e_{n+m} normal to the manifold M_n at the point X. This research was partially supported by the United States Air Force Office of Scientific Research of the Air Research and Development Command.

Received August 13, 1959.