MOUFANG TREES AND GENERALIZED OCTAGONS

RICHARD M. WEISS

1. Introduction. Let Γ be an undirected graph, let $V(\Gamma)$ denote the vertex set of Γ , and let G be a subgroup of aut(Γ). For $x \in V(\Gamma)$, we will denote by Γ_x the set of vertices adjacent to x in Γ and by $G_x^{[i]}$ for any $i \ge 1$ the pointwise stabilizer in G_x of the set of vertices of Γ at distance at most i from x. Thus $G_x^{[1]}$ is the kernel of the action of G_x on Γ_x . An *n*-path of Γ for any $n \ge 0$ is an (n+1)-tuple (x_0, x_1, \ldots, x_n) of vertices such that $x_i \in \Gamma_{x_{i-1}}$ for $1 \le i \le n$ and $x_i \ne x_{i-2}$ for $2 \le i \le n$. Let

$$G_{x,v,\ldots,z}^{[i]} = G_x^{[i]} \cap G_v^{[i]} \cap \cdots \cap G_z^{[i]}$$

for any subset $\{x, y, \dots, z\}$ of $V(\Gamma)$ and any $i \ge 1$. The graph Γ will be called thick if $|\Gamma_x| \ge 3$ for every $x \in V(\Gamma)$. An apartment of Γ is a connected subgraph Ξ such that $|\Xi_x|=2$ for every $x\in V(\Xi)$. When there is no danger of confusion, we will often use integers to denote vertices of Γ .

A generalized n-gon (for $n \ge 2$) is a bipartite graph of diameter n and girth 2n. A generalized *n*-gon Γ for $n \ge 3$ is called Moufang if $G_{1,\dots,n-1}^{[1]}$ acts transitively on $\Gamma_n \setminus \{n-1\}$ for every (n-1)-path $(1,\dots,n)$ of Γ for some $G \le \operatorname{aut}(\Gamma)$. In [7], Tits showed that thick Moufang n-gons exist only for n = 3, 4, 6, and 8. If Γ is a generalized *n*-gon and $G \leq \operatorname{aut}(\Gamma)$, then $G_{0,1}^{[1]} \cap G_{0,\dots,n} = 1$ for every *n*-path $(0,\ldots,n)$ of Γ . (This is a special case of [6,(4.1.1)]; see Theorem 2 of [10].) Thus, the following (Theorem 1 of [11]) is a generalization of Tits's result.

- 1.1. THEOREM. Let Γ be a thick connected graph, let $G \leq \operatorname{aut}(\Gamma)$, and let $n \geqslant 3$. Suppose that for each n-path $(0,1,\ldots,n)$ of Γ ,
 - (i) $G_{1,\dots,n-1}^{[1]}$ acts transitively on $\Gamma_n \setminus \{n-1\}$, and (ii) $G_{0,1}^{[1]} \cap G_{0,\dots,n} = 1$.
- Then n = 3, 4, 6, or 8.

We call a graph Γ (G, n)-Moufang if it is thick and connected and if Γ , G, and n fulfill conditions (i) and (ii) of Theorem 1.1. In this paper, we will be mainly concerned with the case that Γ is a tree.

In [1, (3.6)], the following beautiful connection between trees and generalized polygons was established; see also §6 of [12].

1.2. THEOREM. Let $n \ge 3$. Suppose Γ is a tree and $\mathscr A$ a family of apartments of Γ such that

Received 26 June 1996.