COMPACT AND RELATED MAPPINGS

By Georae L. CAIN, Jr.

1. Introduction. A mapping (continuous function) f : X — f(X) = ¥ from
one topological space onto another is compact if for every compact set K C Y,
f'(K) is compact. A point p in Y is a singular point of f (with respect to
compactness) if contained in every neighborhood of p there is a compact set K
such that {7(K) is not compact.

In this paper, we study the relationships between compactness of a mapping
and certain other common mapping properties (e.g., closed, quasi-open) by
investigating properties of the set S of singular points and its inverse image.

2. The Whyburn unified space of a mapping. We shall make use of the
notion of the unified space of a mapping. This section contains results related
to this important concept that will be used in the sequel.

Given a mapping f : X — f(X) = Y from one Hausdorff space onto another,
G. T. Whyburn [6] defines a new ‘“‘unified space’” Z = X’ + Y’ consisting of
a point 2’ = h(z) for each z in X and a point ' = k(y) for each y in ¥ so that
h(X) = X', k(Y) = Y’, h and k are one-to-one, and X’- Y’ = ¢.

A subset @ C Z is defined to be open provided the following three conditions
hold:

G) »7Y(Q-X") is open in X.
(i) ¥(Q-Y") is open in Y.
(iii) For every compact set K C k™ (Q-Y"),

FHE)[X — h7Y(Q-X")] is compact.

In [6], Whyburn established that the collection of all such open sets Q is a
topology for Z and that Z is a separable metric space if X and Y are separable
metric and locally compact. We shall use the facts, also proved in [6], that h
is strongly open and k is strongly closed (thus h and k are homeomorphisms),
and that the function r : Z — r(Z) = Y’ defined by r(zg) = z if 2 ¢ Y’
and r7(2) = k(f(h™*(2))) if 2 ¢ X' is continuous.

(2.1) TurorEM. A point p in Y is a singular point of f if and only if k(p)
18 an accumulation potnt of X'.

Proof. First suppose there is an open neighborhood U C Z of p’ = k(p)
such that U-X’ = ¢. Then X — b (U-X’) = X, so that if K is any compact
subset of k™(U), then f *(K)-[X — b (U-X")] = §*(K) is compact.
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