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Comment

J. A. Hartigan

Efron and Tibshirani are to be congratulated on a
wide-ranging persuasive survey of the many uses of
the boostrap technology. They are a bit cagey on what
is or is not a bootstrap, but the description at the end
of Section 4 seems to cover all the cases; some data y
comes from an unknown probability distribution F; it
is desired to estimate the distribution of some function
R(y, F) given F; and this is done by estimating the
distribution of R (y*, F) given Fwhere F'is an estlmate
of F based on y, and y* is sampled from the known k.

There will be three problems in any application of
the bootstrap: (1) how to choose the estimate F?
(2) how much sampling of y* from F ? and (3) how
close is the distribution of R( y* F) given F to
R(y, F) given F?

Efron and Tibshirani suggest a variety of estimates
F for simple random sampling, regression, and auto-
regression; their remarks about (3) are confined
mainly to empirical demonstrations of the bootstrap
in specific situations.

I have some general reservations about the boot-
strap based on my experiences with subsampling tech-
niques (Hartigan, 1969, 1975). Let X;, ..., X, be a
random sample from a distribution F, let F, be the
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empirical distribution, and suppose that t(F,) is an
estimate of some population parameter ¢t (F). The sta-
tistic t(F,) is computed for several random subsamples
(each observation appearing in the subsample with
probability ¥2), and the set of t(ﬁ',,) values obtained is
regarded as a sample from the posterior distribution
of t(F). For example, the standard deviation of the
t(F,) is an estimate of the standard error of t(F,)
from t(F); however, the procedure is not restricted to
real valued ¢.

The procedure seems to work not too badly in
getting at the first- and second-order behaviors of

" t(F,) when t(F,) is near normal, but it not effective

in handling third-order behavior, bias, and skewness.
Thus there is not much point in taking huge samples
t(F,) since the third-order behavior is not relevant;
and if the procedure works only for ¢(F},) near normal,
there are less fancy procedures for estimating standard
error such as dividing the sample up into 10 subsam-
ples of equal size and computing their standard devia-
tion. (True, this introduces more bias than having
random subsamples each containing about half the
observations.) Indeed, even if ¢(F,) is not normal, we
can obtain exact confidence intervals for the median
of t(F./0) using the 10 subsamples. Even five sub-
samples will give a respectable idea of the standard
error.

Transferring back to the bootstrap: (A) is the boot-
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