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Comment: On Multivariate Jeffreys’ Priors

José M. Bernardo

Kass presents a lucid, well written description of
the differential geometric foundations of such perva-
sive concepts in statistics as Fisher information, the
Kullback-Leibler metric and information numbers, or
the loglinear structure of exponential families. As the
author points out, these topics directly relate to the
role of reference priors in Bayesian Inference—an
issue he regards as of “ongoing vital importance”—
and one would expect a deeper understanding of such
an issue from his work. I will concentrate on this
point.

JEFFREYS’ PRIORS

Kass very clearly describes some of the more basic
aspects of Jeffreys’ priors. Specifically, I would like to
draw your attention to four of those:

(i) Jeffreys’ general rule is generated by the nat-
ural volume element of the information metric.
(ii) The main intuitive motivation for Jeffreys’
priors is not their invariance, which is certainly
a necessary, but in general far from sufficient,
condition to determine a sensible reference
prior; what makes Jeffreys’ priors unique is
that they are uniform measures in a particular
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metric which may be defended as the “natural”
choice for statistical inference.

(iii) The existence of Jeffreys’ priors requires rather
strong, if fortunately frequent, regularity con-
ditions.

(iv) Multivariate Jeffreys’ priors are often inade-
quate to obtain marginal reference posterior
distributions for its elements—as Jeffreys him-
self realized—and there does not seem to be an
agreed systematic alternative; independent
treatment of orthogonal parameters, when ap-
plicable, is only an ad hoc partial solution. Key
references for the type of problems which may
be encountered from routine use of Jeffreys’
multivariate priors are Stein (1959) or Dawid,
Stone and Zidek (1973).

While (i) and (ii) are possibly sufficient to be sus-
picious about any method for generating reference
priors which does not reduce to Jeffreys’ in one-
dimensional regular problems, (iii) leaves room for
improvement and (iv) clearly requires new work.
When reading Kass’ paper, I was hoping for some new
hints about (iv) but I could not recognize any; I hope
to see some comments in the rejoinder.

REFERENCE PRIORS

In my development of reference priors (Bernardo,
1979)—which reduce to Jeffreys’ for one-dimensional
regular problems—I explicitly recognized the impor-
tance of identifying parameters of interest and

®
www.jstor.org



