DECISION-THEORETIC VARIANCE ESTIMATION

pertaining to the robustness with respect to loss func-
tions and distributions, of the results on estimation in
the present paper.
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Comment

Edward |. George

I would like to begin by congratulating Maatta and
Casella for an extraordinarily lucid and thought-
provoking account of developments in decision-
theoretic variance estimation. By systematically
organizing so many related results, they have success-
fully exposed the main thread of ideas running
through these developments. Effectively, this paper
will serve as a springboard for further research ideas.
To emphasize this point, my comments will focus on
two new directions -along which such ideas might
proceed. The first concerns multiple shrinkage gen-
eralizations, and the second concerns further improve-
ments to shrinkage estimators of the mean.

Let me mention before going on that, although my
comments are limited to suggestions for future devel-
opments in point estimation, I am optimistic that
these may also lead to analogous developments in
interval estimation. I say this in light of the close
connections between developments in these two areas
which is brought out so clearly by Maatta and Casella.

1. MULTIPLE SHRINKAGE GENERALIZATIONS

A key idea behind the improved variance estimators
described by Maatta and Casella is that of adaptively
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pooling possibly related information. In the single
sample setting X, -, X, ~ iid N(u, ¢°), the esti-
mators of Stein, Brown and Brewster and Zidek each
improve on the “straw man” estimator S?/(n + 1),
(82 =73 (X; — X)?), by exploiting the possibility that
u/o = 0. The improved estimators are of the form
#(Z)S2, (Z = YnX/S), where ¢(Z) is bounded above
by 1/(n + 1) and decreases as Z? decreases. When Z?
is small, which is likely when w?/c? is small, these
estimators “shrink” S2/(n + 1), effectively regain-
ing the lost degree of freedom used in estimating u.
Indeed, Stein’s estimator replaces S2/(n + 1) by
Y X?/(n + 2), an appropriate estimator when it is
known that u = 0.

At first glance, this phenomenon may seem to be
only a mathematical curiosity. After all, one degree of
freedom will usually be a minor practical gain. This
is precisely the point of the 4% bound on relative
improvement described by Rukhin (1987a). However,
it is straightforward to generalize these results to the
general linear model case, as Maatta and Casella in-
dicate in Section 5, where there are many more degrees
of freedom and important gains may be realized. In-
deed, the seminal results of Stein (1964) are obtained
in such a case, although he states that “even in this
case . .. the improvement is likely to be slight.”

Unfortunately, there may be good reason to agree
with Stein’s pessimism. This can be seen in the ca-
nonical context of Section 5 where we observe inde-
pendent normal variables X, - - -, X,, X,41, « -+, Xy4p,
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