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Comment

Terry Speed

Geoff Robinson.is to be congratulated for writing
this paper. It is lucidly written, it bridges a number
of gulfs that have developed in our subject, and it is
provocative. That he wrote it is clearly a Good
Thing! I welcome the opportunity to say this and to
make a few remarks that he might have made. I
believe that these remarks will strengthen his al-
ready strong case for a much more explicit recogni-
tion of the role of BLUPs in our subject.

1. THE BAYESIAN DERIVATION

In Section 4.2 Robinson describes a Bayesian
derivation, stating that the posterior mode is given
by the BLUP estimates when (8 is regarded “as a
parameter with a uniform, improper prior distribu-
tion and u as a parameter which has a prior distri-
bution which has mean zero and variance Go?2,
independent of B8.” All this is certainly true, but it
may be helpful to add that if 8 is given a proper
prior (normal) distribution with mean zero and
variance Bo?, say, with u as before, then all of the
results one could possibly want (posterior means,
posterior variances, etc.) can be derived straightfor-
wardly by the standard Bayesian formulae. Then
all one has to do to derive the corresponding BLUP
formulae is let B~! — 0. An identity which I have
found useful, perhaps even indispensible, for carry-
ing out this last step, is discussed in de Hoog, Speed
and Williams (1990). Note that the approach just
described is essentially that adopted in Dempster,
Rubin and Tsutakawa (1981).

2. FORMULAE FOR i

The only actual formulae given in the paper for #
in the general case is the rather complicated one in
Section 4.3. This is a pity, because there is an
,obvious “plug-in”’ expression, namely

(1) & =GZTV-(y - XB),

where V = ZGZT + R. This may be viewed as the
result of regressing u on y, with the mean Xg of y
replaced by its obvious linear estimator.

A variant of (1) is

(1) 2= (2"R"Z+ G ") 'Z"R"}(y - XB).
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The simpler formulae (5.3) and (5.4) arising when
there are no fixed effects also have more general
analogues, namely

) (ZTAZ + G~Y)& = Z"Ay,

where A = R~'(I - S), S = P}y, being the pro-
jector onto #(X) orthogonal with respect to (a, b)
= aTR~1b, and for the variance-covariance matrix
of i:

(3) {61 - (z7az + G71) '} o2

These expressions can be derived readily using the
Bayesian approach outlined in (1) above, together
with the matrix identity already referred to. I note
in passing that Robinson’s formulae (5.4) is in fact
the variance-covariance matrix of # — u, not, as
stated, of .

3. SOLVING THE BLUP EQUATIONS

Perhaps in order to avoid messy algebra, Robin-
son has said little about the actual solution of the
BLUP equations. I know that he has worked on
this problem with some enormous data sets, and so
I am hesitant to comment here. However, it does
seem worthwhile to make one easy point, in order
to connect this topic with another, closely related
one. The obvious rearrangement of the first equa-
tion in (1.2),

(4) XTR'XB = XTR (y - Za),

can be combined with either (1) or (1) above, to
form the basis of an iterative solution of the BLUP
equations, provided, of course, that the separate
problems are readily solved. Just such a strategy is
recommended more generally in Green (1985) in
the context of smoothing, a topic to which I shall
return.

It is also worth pointing out that (1°) or (2) is to
be preferred when G~! has simple structure,
whereas if G is simple and V is readily inverted,
(1) is more useful. In many animal breeding prob-
lems it is G~! which has the simpler structure, as
it also does in the Kalman filter case.

4. REML AND BLUP

In Section 5.4 Robinson states that “REML is the
method of estimating variance components that
seems to have the best credentials from a Classical
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