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and Marron’s (A.1)-(A.5),

(8) Var(rs(x) = — / K2 + o((nh) ™).

This implies that 7, with bandwidth 2 has the
same asymptotic variance as my with the band-
width A, = h/f(x). In particular, the limiting
variances of 71, and riy are the same in a case
highlighted by Chu and Marron, that is, when
X,,..., X, are a random sample from a U(©,1)
distribution.

The bias of rip(x) has the representation (again
under assumptions akin to (A.1)-(A.5))

Bias(rip(x))

%(mQ)"(F(x))/ u’K + o(h?)

(4) h? [ m"(x)f(x) — m'(x)f(x) 2
-4 ) |/
+o(h?).

In general, Bias(/y) is different from both
Bias(/yz) and Bias(rc); this is true even if one
allows the bandwidths of iz and . to vary with
x ala h, = h/(f(x))* By considering (3) and (4)
above, and Sections 3 and 4 of Chu and Marron,
one finds, not surprisingly, that MSE(#,) is not
comparable with either MSE(i2.) or MSE(i ). It
is worth noting, though, that when X,,..., X, are
iid U(0, 1), the asymptotic MSEs of m, and m; are
identical when the two estimators use the same
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identical when the two estimators use the same
bandwidth.

Introducing the estimator M, certainly does not
settle the mean squared error issue. However,
is attractive in that it avoids both the random
denominator problem of 75 and the down weight-
ing pathology of 7. Another nice feature of i is
that, like 7, it has a convenient form for estimat-
ing m/, so long as F is differentiable. Considering
.y also brings into light the question of estimating
the regression-quantile function m@, an object
whose importance has been stressed by Parzen
(1981). Since it is natural to use a fixed, evenly
spaced design on [0, 1] to estimate m@, the convolu-
tion estimator seems ideally suited for estimating
regression-quantile functions.

My final point concerns the use of kernel meth-
ods to test the adequacy of linear models. I was
glad that Chu and Marron mentioned the problem
of testing for linearity, and the attendant impor-
tance of how 7, and ry perform when m is a
straight line. I prefer i over riy for purposes of
testing linearity, since, as Chu and Marron point
out, M has smaller bias than iy in the straight
line case. Indeed, Hart and Wehrly (1991) show
that a boundary-corrected version of 7, (with
bandwidth h) tends to a straight line as A tends to
infinity. The limiting line is a consistent estimator
of m when m(x) = B, + 3, x. Higher-order kernels
can be used to obtain kernel estimates that are
polynomials (of any given degree) for large h. Such
kernel estimates are a crucial part of a test pro-
posed by Hart and Wehrly (1991) for checking the
fit of a polynomial.

above all, balanced investigation of the issues in-
volved in choosing between versions of the kernel
regression estimator.

Chu and Marron (henceforth C&M) understand-
ably concentrate on comparing and contrasting the
two kernel estimators probably most widely em-
ployed in the literature: the Nadaraya-Watson
(N-W) estimator, my, and the Gasser-Miiller
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