and Marron's (A.1)-(A.5),

(3)
$$\operatorname{Var}(\hat{m}_T(x)) = \frac{\sigma^2}{nh} \int K^2 + o((nh)^{-1}).$$

This implies that \hat{m}_T with bandwidth h has the same asymptotic variance as \hat{m}_E with the bandwidth $h_x = h/f(x)$. In particular, the limiting variances of \hat{m}_T and \hat{m}_E are the same in a case highlighted by Chu and Marron, that is, when X_1, \ldots, X_n are a random sample from a U(0,1) distribution.

The bias of $\hat{m}_T(x)$ has the representation (again under assumptions akin to (A.1)–(A.5))

Bias
$$(\hat{m}_T(x))$$

$$= \frac{h^2}{2} (mQ)''(F(x)) \int u^2 K + o(h^2)$$

$$= \frac{h^2}{2} \left\{ \frac{m''(x) f(x) - m'(x) f'(x)}{f^3(x)} \right\} \int u^2 K$$

$$+ o(h^2).$$

In general, $\operatorname{Bias}(\hat{m}_T)$ is different from both $\operatorname{Bias}(\hat{m}_E)$ and $\operatorname{Bias}(\hat{m}_C)$; this is true even if one allows the bandwidths of \hat{m}_E and \hat{m}_C to vary with x a la $h_x = h/(f(x))^a$. By considering (3) and (4) above, and Sections 3 and 4 of Chu and Marron, one finds, not surprisingly, that $\operatorname{MSE}(\hat{m}_T)$ is not comparable with either $\operatorname{MSE}(\hat{m}_C)$ or $\operatorname{MSE}(\hat{m}_E)$. It is worth noting, though, that when X_1,\ldots,X_n are iid U(0,1), the asymptotic MSEs of \hat{m}_T and \hat{m}_E are identical when the two estimators use the same

identical when the two estimators use the same bandwidth.

Introducing the estimator \hat{m}_T certainly does not settle the mean squared error issue. However, \hat{m}_T is attractive in that it avoids both the random denominator problem of \hat{m}_E and the down weighting pathology of \hat{m}_C . Another nice feature of \hat{m}_T is that, like \hat{m}_C , it has a convenient form for estimating m', so long as \hat{F} is differentiable. Considering \hat{m}_T also brings into light the question of estimating the regression-quantile function mQ, an object whose importance has been stressed by Parzen (1981). Since it is natural to use a fixed, evenly spaced design on [0,1] to estimate mQ, the convolution estimator seems ideally suited for estimating regression-quantile functions.

My final point concerns the use of kernel methods to test the adequacy of linear models. I was glad that Chu and Marron mentioned the problem of testing for linearity, and the attendant importance of how \hat{m}_C and \hat{m}_E perform when m is a straight line. I prefer \hat{m}_C over \hat{m}_E for purposes of testing linearity, since, as Chu and Marron point out, \hat{m}_C has smaller bias than \hat{m}_E in the straight line case. Indeed, Hart and Wehrly (1991) show that a boundary-corrected version of \hat{m}_C (with bandwidth h) tends to a straight line as h tends to infinity. The limiting line is a consistent estimator of m when $m(x) = \beta_0 + \beta_1 x$. Higher-order kernels can be used to obtain kernel estimates that are polynomials (of any given degree) for large h. Such kernel estimates are a crucial part of a test proposed by Hart and Wehrly (1991) for checking the fit of a polynomial.

Comment

M. C. Jones

United Kingdom.

It is a great pleasure to congratulate the authors on a most informative, thought-provoking and,

M. C. Jones is Lecturer, Department of Statistics, The Open University, Milton Keynes MK7 6AA, above all, *balanced* investigation of the issues involved in choosing between versions of the kernel regression estimator.

Chu and Marron (henceforth C&M) understandably concentrate on comparing and contrasting the two kernel estimators probably most widely employed in the literature: the Nadaraya-Watson (N-W) estimator, \hat{m}_E , and the Gasser-Müller