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Comment

Clive W. J. Granger

There is a great deal to be admired in the exten-
sive work on chaos that has appeared in recent
years, including some startling but simple theo-
rems, and also the best art work produced by
mathematics. However, in my opinion, it is often
surrounded by an unnecessary amount of hype,
considerable zeal and possibly some illogical argu-
ments and confusion.

To simplify this discussion, I will consider only
series that are “white chaos” and compare them
with iid series. A process will be called “white” if
its (estimated) autocorrelations are all zero and
thus the (estimated) spectrum is flat, with esti-
mates based on a long realization of the process.
White chaos is a deterministic process with these
white properties. As an example, I will consider the
process generated by

(1) Xpp1 = 42,1 - x,)

with starting value x,=s, s being the “seed”
value. I will also assume that truly stochastic pro-
cesses exist—an assumption that I think most sci-
entists will accept with probability one. Thus, an
iid series y, exists, and such a series is also obvi-
ously white.

Let G,, G, be a pair of generating mechanisms,
producing series x,,, x,,; then, it is obviously possi-
ble that the two series will have some properties in
common, such as zero means and identical (esti-
mated) spectra. Many generating mechanisms can
produce series having the white properties, as
pointed out in Granger (1983). An example is the
bilinear process generated by

(2) Ye= Y182t &,

where ¢, is zero mean iid. It is clearly possible for a
(deterministic) white chaos to have many proper-
ties of an iid process. Statisticians are familiar
with pseudo-random numbers (prn) generated on
computers by a somewhat complex deterministic
model. These numbers are chaos of ‘“high dimen-
sion,” as defined in the papers being discussed, or
“space-filling.” It is generally agreed that it would
take an enormous amount of data—a sample size of
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billions—to distinguish prn from a true iid. The
only questions then worth considering is how to
distinguish between a low-dimensional white chaos
and an iid series, and thus whether or not white
chaos occurs in reality rather than in computer
simulations or physics laboratory experiments.

The papers emphasize the similarities between
white chaos and iid series, such as the similar
appearance of their plots through time or the val-
ues taken by statistics such as autocorrelations.
The fact that white chaos can look like iid, which
can be restated as an iid series that looks like
white chaos, has no implication. If two generating
mechanisms produce series, each of which has some
properties, P, it does not mean that the mecha-
nisms are identical or similar. There is a danger of
falling into the famous logical fallacy that says, “If
A then B, observe B therefore A.” An example
would be, “If chaos (A) then positive Lyapunov
exponent (B), if data has a positive Lyapunov expo-
nent then it must be chaos,” which is seen occasion-
ally in chaos literature but is, of course, false
because some stochastic processes, such as an
AR(1) with the coefficient larger than one, also
have positive Lyapunov exponents. It follows that
this exponent cannot be used as a “popular mea-
sure of chaos” (Berliner, Section 3) without the
added assumption that the process is chaos.

A similar problem arises with the interpretation
of ergodicity. Let the proportion of time that a
series lies in some region R asymptotically tend to
a constant, for every R. This asymptotic proportion
could be called the likelihood that the series is
(eventually) in R. The fact that chaotic series have

“such likelihood is interesting but not especially

surprising. If the series are also assumed, or known,
to be stochastic, then these likelihoods can be called
probabilities and interpreted in the usual fre-
quency count manner. There is no philosophical
problem in doing this. Without the assumption of
stochasticity, the likelihood need not be called a
probability and then no unnecessary confusion oc-
curs. The likelihood can be put together for differ-
ent sets R to derive a marginal “distribution” for
the series. However, of much greater interest is the
joint distribution of a set of adjacent values of the
series, which can be derived in a similar manner.
Consider a pair of random variables X, Y, with a
joint distribution f(x, y). They can be called “sin-
gular” if there exists some combination X — g(Y),
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