314

Lundy and Kruskal, 1985; Kruskal, Harshman and
Lundy, 1989; Lundy, Harshman and Kruskal, 1989).

Krijnen and Ten Berge (1991) developed variants of
the basic PARAFAC algorithm to put nonnegativity
constraints on the solution by using special least
squares regression algorithms from Lawson and Han-
son (1974). Durrell et al. (1990) refer to programs for
three-way and four-way PARAFAC models (Lee, 1988)
which also included nonnegativity constraints.

3.6 Additional Issues

In the above sections, the general focus has been on
models and algorithms, but there are several issues in
connection with these models which have not been
mentioned so far. Very prominent, for instance, in
Harshman’s work, has been the question of prepro-
cessing (i.e., centering and standardisation) of the data
before the three-way analysis. Harshman and Lundy
(1984b) discuss this issue in great detail touching on
both algebraic and practical aspects (see also Kroonen-
berg, 1983). Ten Berge and Kiers (1989) and Ten Berge
(1989) provide some theoretical results with respect to
the iterative centering and standardisation proposed
by Harshman and Lundy.

Another issue in this context is the postprocessing
of output, that is, representation, graphing and trans-

Comment

Donald S. Burdick

Multilinear models are fascinating because of the
richness of their mathematical structure and the use-
fulness of their applications. The authors have done a
fine job of presenting both of these features. I welcome
their paper and hope that it has the effect of stimulat-
ing interest in this important topic.

Having said that, I must add my opinion that it is
a mistake to shy away from tensors. The geometry of
tensor products can be a source of valuable insight
when struggling with the complicated details of multi-
linear algebra. The geometric perspective is especially
useful when trying to make sense out of the nonunique-
ness that occurs when model parameters are not identi-
fiable.

For example, the concept of tensor products of vector
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formations of the basic output of the programs to
enhance interpretability (see especially Harshman and
Lundy, 1984b; Kroonenberg, 1983).

Smilde (1992) raises the issue of variable selection
for three-way data, as well as the problem of nonlineari-
ties in the data and their effect on the solutions. These
issues can also be seen as a serious concern in such
areas like ecology where nonlinearities are the rule
rather than the exception (see, e.g., Faith, Minchin and
Belbin, 1987).

A final point is that within the framework of the
analysis of covariance structures, McDonald (1984) has
discussed the PARAFAC model, cited its limitations
and proposed an altogether different (stochastic) ap-
proach to the kind of three-way data psychologists
often encounter.

4. CONCLUSION

With the above comments, I have attempted to give
a rough outline of research on the PARAFAC model.
The model itself is only one of several conceivable
models for three-way data, but a fully fledged exposé
is not feasible here. What makes the PARAFAC model
special is that it has a unique solution, a situation
which is fairly unique in three-way land.

spaces can shed light on the structure of the T3 model.
Let Y denote an I X J X K data array and write

Y=u+e

where u is given by (19). The data array Y is uncon-
strained, which is tantamount to saying that Y is an
arbitrary vector in R ® R’ ® R¥, the tensor product
of real Euclidean spaces of dimensions I, J and K,
respectively. The array u, however, is constrained by
expression (19). What is the nature of that constraint?
Expression (19) stipulates that u liein @ ® & ® C,
where @, & and € are the respective subspaces of R/,
R’ and RX spanned by the columns of A, B and I,
respectively. The least squares fit of 4 to Y is the
projection of Y on @ ® & ® C. From a geometric
perspective, the nonidentifiability is obvious, because
the projection of a data vector on a subspace is un-
affected by changes in the basis spanning the subspace.
Replacing A by AM amounts to no more than a change
of basis for Q.
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