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In his customary, penetrating way, Professor Brown has discovered and
illuminated a fascinating admissibility paradox. This paradox brings together
the elusive concept of ancillarity with the (still somewhat puzzling) Stein
phenomenon and, through this synthesis, perhaps explains both a little better.
The goal in this discussion is to understand and explain Brown’s admissibility
paradox in a simple intuitive way.

Using the notation of Section 3, we observe Y,.; and V,,,, where EY =
al + VB, and we want to estimate a using an estimator that is a function of Y
and V, say d(Y, V). The loss function given by (3.1.2) is squared error loss

(1) L(a,d) = (a —d)>

In a regression problem, we estimate a based on observing values Y = y and
V = v. Brown’s paradox asserts that the admissibility of &, the least squares
estimator, depends on whether V is treated as constant or as a realized value
of an ancillary random variable.

An important distinction between the two problems lies in the risk func-
tions: Although the loss function remains the same, the risk function changes
depending on whether we consider the matrix V to be fixed or random. If V is
fixed, then the risk of estimating a is conditional on the value V = v, that is,

(2) R(a,d|V=0) = E[(a - d(Y,0))|V =]

Here the expectation is over the distribution of Y given V = v which, of
course, depends on a. If V is considered a random variable, then the risk of
estimating a is unconditional on the value V = v, that is,

(3) R(a,d) = [R(a,d|V =) fy(v) dv,

where f,(-) denotes the density of V.

Keeping the risk relationship (3) in mind, we can now reexamine the
admissibility /inadmissibility results of Proposition 3.1.1 and Theorem 3.2.2
(or their predecessors, Proposition 2.1.1 and Theorem 2.1.2). The admissibility
results relate to the risk function R(a, d|V = v) of (2), while the inadmissibil-
ity results relate to the risk function R(e, d) of (3). Furthermore, the relation-
ship in (3) amplifies the paradoxical nature of Brown’s results. Note that from
(3) we immediately get the implication that if an estimator d(Y,v) is domi-
nated for every v by d*(Y,v) using R(a,d|V = v) of (2), it is inadmissible
under R(a, d(Y,V)) of (3). But this does not happen for d(Y, v) = &. Since the
least squares estimator is admissible under R(a, @|V = v), this implies that it
cannot be dominated in risk for every v by the same estimator.
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