GEORGE CASELLA¹

Cornell University

In his customary, penetrating way, Professor Brown has discovered and illuminated a fascinating admissibility paradox. This paradox brings together the elusive concept of ancillarity with the (still somewhat puzzling) Stein phenomenon and, through this synthesis, perhaps explains both a little better. The goal in this discussion is to understand and explain Brown's admissibility paradox in a simple intuitive way.

Using the notation of Section 3, we observe $Y_{n\times 1}$ and $V_{n\times r}$, where $EY = \alpha 1 + V\beta$, and we want to estimate α using an estimator that is a function of Y and V, say d(Y, V). The loss function given by (3.1.2) is squared error loss

(1)
$$L(\alpha,d) = (\alpha-d)^2.$$

In a regression problem, we estimate α based on observing values Y=y and V=v. Brown's paradox asserts that the admissibility of $\hat{\alpha}$, the least squares estimator, depends on whether V is treated as constant or as a realized value of an ancillary random variable.

An important distinction between the two problems lies in the risk functions: Although the loss function remains the same, the risk function changes depending on whether we consider the matrix V to be fixed or random. If V is fixed, then the risk of estimating α is conditional on the value V = v, that is,

(2)
$$R(\alpha, d|V=v) = E\left[\left(\alpha - d(Y,v)\right)^2 \middle| V=v\right].$$

Here the expectation is over the distribution of Y given V = v which, of course, depends on α . If V is considered a random variable, then the risk of estimating α is unconditional on the value V = v, that is,

(3)
$$R(\alpha,d) = \int R(\alpha,d|V=v) f_V(v) dv,$$

where $f_V(\cdot)$ denotes the density of V.

Keeping the risk relationship (3) in mind, we can now reexamine the admissibility/inadmissibility results of Proposition 3.1.1 and Theorem 3.2.2 (or their predecessors, Proposition 2.1.1 and Theorem 2.1.2). The admissibility results relate to the risk function $R(\alpha, d|V=v)$ of (2), while the inadmissibility results relate to the risk function $R(\alpha, d)$ of (3). Furthermore, the relationship in (3) amplifies the paradoxical nature of Brown's results. Note that from (3) we immediately get the implication that if an estimator d(Y, v) is dominated for every v by $d^*(Y, v)$ using $R(\alpha, d|V=v)$ of (2), it is inadmissible under $R(\alpha, d(Y, V))$ of (3). But this does not happen for $d(Y, v) = \hat{\alpha}$. Since the least squares estimator is admissible under $R(\alpha, \hat{\alpha}|V=v)$, this implies that it cannot be dominated in risk for every v by the same estimator.

¹Research supported by NSF Grant No. DMS-89-0039.