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We are fortunate that three powerful mathematical statisticians have cooperated here
to summarize the current progress of decision theoretic multiparameter estimation for
non-normal problems. Paralleling results of Stein and others for the normal distribution,
these authors have established in certain discrete settings that the usual estimators can be
dominated uniformly in multiparameter settings for weighted sums of squared error loss
functions, if the loss function is known.

While these results are a triumph within statistical decision theory, they will affect
applied statistics little. Even for the normal distribution, despite Stein’s celebrated esti-
mator for the “equal variances case,” classical decision theory still rules out good “unequal
variances” estimators: in the unequal variances case minimax shrinking coefficients in-
crease with decreasing variance, violating the principle of less shrinking with more
information. Thus minimax theory gives the wrong answer for the most prevalent appli-
cations. Nor will the rules derived here for the Poisson distribution satisfy applied
statisticians. The authors cannot be blamed for this—they have devised ingenious esti-
mators in order to dominate 8° = X. Rather, the fault lies in requiring uniform frequentist
dominance with respect to the weighted sum of coordinate losses, and that the weights
used to define these losses are rarely known in practice. Simpler and more applicable
multiparameter estimation shrinking methods are available for these distributional set-
tings, but they emanate from Bayesian or empirical Bayesian viewpoints. The following
discussion amplifies these points.

1. The unequal sample size case. In many Poisson applications we have n, inde-
pendent Poisson observations for estimating the Poisson mean A;, i = 1, 2, ---, p. This
happens, for example, if X, is the total number of failures of component type i in 7, time
periods with failure rate A,, so

1) Xmd ~ Poisson(m\,), i=1,2,.--,p

and there are p different types of components. In such cases one wishes to estimate A,, and
not 6, = n.\; of the paper. Then X, = X,/n, is the unbiased estimate, with variance A,/n,.
The loss function (1.2) of the paper then becomes

(2) L= Y% e, — ) 2/A™

with ¢, = n® ™. This choice of ¢, has no special appeal, and other ¢, also should be
considered. In the equal sample size case, however, the losses on 6, in (1.2) of the paper and
A, above are equivalent.

Not only do transformations of parameters affect loss functions, but they also affect
prior distributions. For example, Table 2 and Table 3 assume exchangeable prior distri-
butions on the 6,, i.e. a < 6, < b for various a and b. But then the A, are not exchangeable,
because a/n, < \, < b/n,. In practice, the A; are more likely to be exchangeable than the
6,, and in such cases the theory provided does not properly combine sample and apriori
information.

Section 3 also covers negative binomial distribution, to which the preceding
remarks apply. It is hard to see how the m, should be chosen for the component losses
(p. — p.)%/p7 to be meaningful.

2. Dependence of dominating rules on the loss function. For each loss function
(1.2) a different estimation rule is produced that is superior to 8° = X. Note that §° emerges
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