NOTES

CORRECTION TO

"RADON-NIKODYM DERIVATIVES OF GAUSSIAN MEASURES"

BY L. A. SHEPP

Bell Laboratories

Introduction. J. R. Klauder kindly pointed out that the first statement of Theorem 11 of my paper [2] is incorrect. It was claimed incorrectly that if h = h(t), $0 \le t \le T$ is a (strictly) increasing absolutely continuous function with h(0) = 0, then a necessary and sufficient condition that the Gauss-Markov process

(1)
$$X(t) = \frac{1}{(h'(t))^{\frac{1}{2}}} W(h(t)), \qquad 0 \le t \le T$$

is equivalent to the Wiener process $W, X \sim W$, is that

The case

(3)
$$h(t) = t + t^{\frac{3}{2}}, \qquad 0 \le t \le T = 1$$

gives an example where (2) fails although $X \sim W$. We will prove that the condition

is necessary and sufficient for $X \sim W$. Note that (3) satisfies (4) but not (2). Theorem 1 of [2] gives a general condition for a Gaussian process to be equivalent to W but the condition is difficult to apply in this case. Instead we use the elegant results of M. Hitsuda [1]. Note that [4] gives necessary and sufficient conditions among a restricted class of h for $X \sim W$. Of course the exact scale normalization $1/(h'(t))^{\frac{1}{2}}$ in (1) is necessary for $X \sim W$ (e.g., note that $cW \sim W$ only for c = 1).

The error in the argument in [2] that $X \sim W$ implies (2) occurs in the ninth line from the bottom of page 344 where it is incorrectly claimed that $v' \in L^2$ [0, T] if $u'(\min(s, t))v'(\max(s, t)) \in L^2$ [0, T] × [0, T].

The argument given for the converse assertion, that (2) implies $X \sim W$, tacitly assumes that h is bounded and under this assumption is correct since then (2) implies (4) which implies that $X \sim W$. However for unbounded h, i.e., $h(T) = \infty$, e.g.,

(5)
$$h(t) = t/(1-t), \qquad 0 \le t \le T=1,$$
315