NOTES

This section is devoted to brief research and expository articles, notes on methodology and other short items.

A FURTHER REMARK CONCERNING THE DISTRIBUTION OF THE RATIO OF THE MEAN SQUARE SUCCESSIVE DIFFERENCE TO THE VARIANCE¹

By John von Neumann

Institute for Advanced Study²

1. **Introduction.** In our previous paper¹ it was found convenient to assume that the number m (of the variables of the quadratic form under consideration) is even. (Cf. p. 383, loc. cit.) This means that in the application to the mean square successive difference n = m + 1 must be odd. (Cf. p. 389, id.)

In this note we shall show that the distribution for an odd m (i.e. an even n) can be expressed by means of the distribution for an even m—the latter being already known, loc. cit.

Specifically, consider the distribution of $\gamma = \sum_{\mu=1}^m a_\mu x_\mu^2$, if the x_1, \dots, x_m are

equidistributed over the surface $\sum_{\mu=1}^{m} x_{\mu}^{2} = 1$. Denote the *m*-uplet (a_{1}, \dots, a_{m}) by A, then the distribution function of γ depends on A; denote that distribution by $\omega_{A}(\gamma)$. (Cf. p. 372 id., we write a_{μ} for the B_{μ} there.)

Now consider an m-uplet $A = (a_1, \dots, a_m)$ and a p-uplet $B = (b_1, \dots, b_p)$ and form the m + p-uplet $C = (a_1, \dots, a_m, b_1, \dots, b_p)$. Write C = A + B. Then we shall show that there exists a simple expression for $\omega_C(\gamma)$ in terms of $\omega_A(\gamma)$ and $\omega_B(\gamma)$.

For the specific application to the mean square successive difference, we can put n=m+1, $A=(\cos{(\pi\mu/n)}$ for $\mu=1,\cdots,\frac{1}{2}n-1,\frac{1}{2}n+1,\cdots,n-1)$, $B=(0), C=A+B=(\cos{\pi\mu/n}$ for $\mu=1,\cdots,n-1)$.

2. The recursion formula. We proceed as follows. $\omega_A(\gamma)$ can also be used to express the joint statistics of

$$\gamma = \sum_{\mu=1}^m a_\mu x_\mu^2$$
 and $\rho = \sum_{\mu=1}^m x_\mu^2$,

or better, the volume of that part of the x_1, \dots, x_m -space which corresponds to any given domain in the γ , ρ -plane. Thus the volume corresponding to a

² Also Scientific Advisory Committee of the Ballistic Research Laboratory, Aberdeen Proving Ground.

¹Cf. the paper by the same author, Annals of Math. Stat., vol. 12(1941), pp. 367-395.