ON THE PROBLEM OF MULTIPLE MATCHING

By I. L. BATTIN

Drew University

1. Introduction. The problem of determining the distribution of the number of "hits" or "matchings" under random matching of two decks of cards has received attention from a number of authors within the last few years. In 1934 Chapman [2] considered pairings between two series of t elements each, and later [3] generalized the problem to series of u and $t \leq u$ elements respectively. In the same paper he also considered the distribution of the mean number of correct matchings resulting from n independent trials, and gave a method, and tables, for determining the significance of any obtained mean. In 1937 Bartlett [1] considered matchings of two decks of cards, using a number of interesting moment generating functions. In 1937 Huntington [12, 13] gave tables of probabilities for matchings between decks with the compositions (5⁵), (4⁴), and (3^3) , where (s^t) denotes a deck consisting of s of each of t kinds of cards. More generally $(s_1s_2 \cdots s_t)$ denotes s_1 cards of the first kind, s_2 of the second, etc. Sterne [16] has given the first four moments of the frequency distribution for the (5⁵) case and has fitted a Pearson Type I distribution function to the distribution. Sterne obtained his results by considering the probabilities in a 5×5 contingency table. He also considered the 4×4 and 3×3 cases. In 1938 Greville [7] gave a table of the exact probabilities for matchings between two decks of compositions (5). Greenwood [4] obtained the variance of the distribution of hits for matchings between two decks having the respective compositions (s^t) and $(s_1s_2\cdots s_t)$ with $s_1+s_2+\cdots+s_t=st=n$, and where it is not necessary that all the s's should be different from zero. Earlier Wilks [19] had considered the same problem for t = 5 and n = 25.

In a very interesting paper Olds [15] in 1938 used permanents to express a moment generating function suitable for the problem in question. He obtained factorial moments and the first four ordinary moments about the mean, first for two decks with composition (4^2) , and then for two decks of composition (s^i) . In 1938 Stevens [17] considered a contingency table in connection with matchings between two sets of n objects each, and gave the means, variances, and covariances of the single cell entries and various sub-totals of the cell entries. Stevens [18] also gave a treatment of the problem of matchings between two decks which was based on elementary considerations. In 1940 Greenwood [6] gave the first four moments of the distribution of hits between two decks of any composition whatever, generalizing the problem which had been treated earlier by Olds [15]. Finally in 1941, Greville [8] gave the exact distribution of hits for matchings between two decks of arbitrary composition. He also considered the problem from the standpoint of a contingency table, as had been done earlier by Stevens.