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1. Introduction. When an investigator is interested in all of the latent roots
of the characteristic equation of a matrix and not in its latent vectors, it is
sometimes desirable to expand out the determinental equation in order to de-
termine explicitly the polynomial coefficients (pi, pz, - -+, P.) in the expression

@) D) =N —a|=\"4+pA" + -+ paoih + Pa .

This can be done in a variety of ways, all of which are necessarily somewhat
tedious for high order matrices. Except for sign the coefficients are respectively
the sum of a’s principal minors of a given order. These can be computed
efficiently by ‘“pivotal” methods [1]. Alternatively through the utilization of
the Cayley-Hamilton theorem, whereby a matrix satisfies its own characteristic
equation, the p’s appear as the solution of # linear equations [2, 3]. In a third
method Horst has employed Newton’s formula concerning the powers of roots
to derive the p’s as the solution of a triangular set of equations, the coefficients
of the latter only being attained after considerable matrix multiplication [4].
A fourth method suggested to me by Professor E. Bright Wilson, Jr. of Harvard
University, consists of evaluating D(\) for n values of A, presumably by efficient
“Doolittle” methods; to these n points, Lagrange’s interpolation formula is
applied to determine the n coefficients explicitly.

2. The New Method. The present paper describes a new computational
method based upon well-known dynamical considerations. A single nth order
differential equation can be converted into ‘“‘normal’’ form, involving = first order
differential equations. This is easily done by defining appropriate new variables.
If the original nth order differential equation is written as

@) X0+ X0 + - 4 paaX'(©) +pa =0,
then the new normal system can be written as
3) X)) = 20 Xi(), G=1,-n
where
0 1 0 0
0 0 1 0
B =] oo
@) 0o 0 0 - 1
—Dn —Pn— — Pn-2 et —D1
is the so-called companion matrix to the polynomial in question.
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