ON THE ASYMPTOTIC DISTRIBUTION OF DIFFERENTIABLE STATISTICAL FUNCTIONS

By R. v. Mises

Harvard University

TABLE OF CONTENTS

	PAGI
Introduction	309
Part I. Preliminary Theorems.	
1. Asymptotically Equal Distributions	311
2. Special Class of Statistical Functions: Quantics	312
3. Asymptotic Expectation of Excess-Power Products	
4. Asymptotic Expectation and Variance of Quantics	
5. Final Statement on the Limit of Expectation of Quantics	320
6. Theorem on Products of n Functions	322
Part II. Differentiable Statistical Functions.	
1. Definitions	
2. Taylor Development	325
3. General Theorem	
4. Illustrations	329
Part III. Second-Type Asymptotic Distribution.	
1. Statement of the Problem	331
2. Characteristic Function	332
3. Asymptotic Value of $Q_n(u)$	335
4. Asymptotic Value of $P_n(x)$	338
5. Transition to the Continuous Case	342
References	348

Introduction. If n real variables x_1, x_2, \dots, x_n are subject to a probability distribution with the element $dV_1(x_1)dV_2(x_2)\cdots dV_n(x_n)$ one can ask for the distribution of any function f of $x_1, x_2, \dots x_n$. We are primarily interested in statistical functions, i.e. in functions that depend on the repartition $S_n(x)$ of the n quantities $x_1, x_2, \dots x_n$ only. The simplest case is that of the linear statistical functions

(1)
$$f = \int \psi(x) \ dS_n(x) = \frac{1}{n} [\psi(x_1) + \psi(x_2) + \cdots + \psi(x_n)].$$

The so-called Central Limit Theorem of Probability Calculus states that the distribution of a linear statistical function, if n tends to infinity, approaches more and more the normal (Gauss) distribution if some very general conditions linking $\psi(x)$ and the $V_{\nu}(x)$ are fulfilled. It has been shown, ten years ago, [2] that the restriction to linear functions here is immaterial. Much more general

¹ The function $S_n(x)$ is called the repartition of the real quantities x_1 , x_2 , \cdots , x_n if $nS_n(x)$ is the number of those among the x_1 , x_2 , \cdots , x_n that are smaller than or equal to x.