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Introduction. If n real variables z;, zs, - - - , z, are subject to a probability
distribution with the element dV,(z;)dVa(xz) - -+ dV,.(x,) one can ask for the
distribution of any function f of z;, ., -+ - z, . We are primarily interested in
statistical functions, i.e.in functions that depend on the repartition' S, (x) of the
n quantities @, , 2», - -+ @, only. The simplest case is that of the linear statis-
tical functions

) 7= [¥@ a8.@) = W) + 9@ + o + il

The so-called Central Limit Theorem of Probability Calculus states that the
distribution of a linear statistical function, if n tends to infinity, approaches
more and more the normal (Gauss) distribution if some very general conditions
linking ¥(x) and the V,(x) are fulfilled. It has been shown, ten years ago, [2]
that the restriction to linear functions here is immaterial. Much more general

1 The function S.(z) is called the repartition of the real quantities z;, z2, -, z, if
nSn(x) is the number of those among the z, , z2 , - -, z. that are smaller than or equal to z.
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