604 ABSTRACTS

It is easily seen that an "outer" estimate of p is still given by U_{k+1} . However, an "inner" estimate is now given by U_{k-1} , leading to a lower end point of the confidence interval which is unnecessarily small.

The method of obtaining a confidence interval for p discussed in this note is in a certain sense the reverse of the method discussed in an earlier paper of the author [2]. There it was shown how confidence intervals for p can be used to obtain confidence intervals for quantiles, which then can be used to obtain tolerance intervals.

REFERENCES

[1] S. S. Wilks, "Order statistics," Bull. Am. Math. Soc., Vol. 54 (1948), pp. 6-50.

[2] G. E. NOETHER, "On confidence limits for quantiles," Annals of Math. Stat., Vol. 19 (1948), pp. 416-419.

ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Minneapolis meeting of the Institute, September 4-7, 1951)

1. On Stieltjes Integral Equations of Stochastic Processes. Maria Castellani, University of Kansas City.

This paper considers two methods of solving certain S-integral equations.

a. A Fredholm-Stieltjes integral equation of generating functions. We give the F-S integral equation $\int_E A(s,x) \, dg(x) = f(s)$, where $A(s,x) = \sum_{k=0}^{\infty} \alpha_k(x) s^{-k}$ and $f(s) = \sum a_k s^k$ for $s \to \varphi(s)$ and $a_0 = 0$ if k = 0. Let us assume that u(x) and v(x) are respectively solutions of $\int_E A(s,x) \cdot A(-s_1,x) \, du(x) = 1/(S-S_1)$ and $\int_E A(s,x) \, dv(x) = 0$. If we consider

$$\int_{\mathbb{R}} A(s, x) A(-s_1, x) f(s_1) \ du(x) = f(s_1)/(S - S_1)$$

and if $\gamma(x)$ is the coefficient of $-1/S_1$ in the serial expansion of $A(-s,x)f(s_1)$, then under fairly general conditions the required solutions are given, almost everywhere, by $g(x) = \text{const.} \int_{-x}^{x} dv(x) + \int_{-x}^{x} \gamma(x) du(x)$. The proof is based on a Murphy D'Arcais linear operator and on the ρ operator of S-integrals.

b. A Volterra-Stieltjes integral of recurrent random functions. Let us have over a time interval (τ, t) an unknown rf $\delta(t - \tau)$ satisfying the following recursive equation: $\delta(t - \tau) = \delta(\tau) - \int_{\tau}^{t} \delta(x - \tau) \rho(x) \ dF(x)$ where F(x) is a df and $\rho(x)$ is bounded. We assume the inter-

val divided into n parts and also that the set of the n discrete values of δ satisfy the following relation: $\delta(t-\tau)/\delta(\tau) = \prod_{s=\tau}^{s-t} (1-\rho(s)\Delta F(s))$. If $F = F_1 + F_2$, where the F_1 is a continuous function and F_2 is a jump function over a set S of points, then by a generalized method of Cantelli, taking finer and finer partitions, we obtain as a limit $\delta(t-\tau)/\delta(\tau) = \frac{1}{2} \int_0^{s} \frac{1}{2}$

 $\left[\exp\left(-\int_{\tau}^{t}\rho(x)\ dF_{1}(x)\right)\right]\Pi_{seS}(1-\rho(s)\ dF_{2}(s)).$ This gives almost everywhere the required solutions.