In this note an alternative proof is given which entails little computation and is self-contained.

Replace the interval (0, 1) by the reals modulo 1, considered as a circle of circumference 1. Let c be an arbitrary point on the circle. Moving from c in the direction corresponding to increasing values (0, 1), one meets successively the points  $U_{k+1}$ ,  $U_{k+2}$ ,  $\cdots$ ,  $U_n$ ,  $U_1$ ,  $\cdots$ ,  $U_k$  where k, so defined, is a r.v. depending on c. Rename these points  $U_1^c$ ,  $U_2^c$ ,  $\cdots$ ,  $U_n^c$  respectively. Define i = i(j) by  $U_i^c = U_i$ . Let  $u_i^c$  denote the (arc) distance of  $U_i^c$  from c taken in the increasing direction. Therefore,

$$i = k + j;$$
  $u_j^c = U_{k+j} - c$  for  $j = 1, \dots, n - k$   
 $i = k + j - n;$   $u_j^c = U_{k+j-n} + 1 - c$  for  $j = n - k + 1, \dots, n$ 

With the indicated relation between i and j observe that

$$j/n - u_i^c = (i - k)/n - U_i + c = i/n - U_i + c - k/n.$$

For a fixed c and a given sample, c and k are constants and hence  $j/n - u_j^c$  attains its maximum at the same point  $U^* = U_{i^*}$  as does  $i/n - U_i$ .

Given a sample  $U_1, \dots, U_n$ , the point  $U^*$  on the circle of reals mod. 1 is therefore independent of the choice of the initial point c taken instead of 0 on this circle. Since the distribution of X mod. 1 is uniform, that is, is invariant under translations, the distribution of  $U^*$  mod. 1 is also invariant under translations. Thus  $U^*$  has a uniform distribution on (0, 1), q.e.d.

## REFERENCES

- [1] Z. W. BIRNBAUM AND RONALD PYKE, "On some distributions related to the statistic  $D_n^+$ ," Ann. Math. Stat., Vol. 29 (1958), pp. 179-187.
- [2] MEYER DWASS, "On several statistics related to empirical distribution functions," Ann. Math. Stat., Vol. 29 (1958), pp. 188-191.

## QUASI-RANGES OF SAMPLES FROM AN EXPONENTIAL POPULATION

By PAUL R. RIDER

Wright Air Development Center

In a study of the use of ranges and quasi-ranges in estimating the standard deviation of a population, Harter [4] has compared the results for samples from a normal population with those for samples from certain other populations, including the exponential. In this note are given the distributions of quasi-ranges from the exponential population and also formulas for the cumulants of these quasi-ranges.

Received June 23, 1958; revised October 17, 1958.