EQUALITIES FOR STATIONARY PROCESSES SIMILAR TO AN EQUALITY OF WALD

By Shu-Teh Chen Moy

Wayne State University¹

I. Introduction. Let Ω be a non-empty set with elements ω , $\mathfrak F$ be a σ -algebra of subsets of Ω and P be a probability measure on \mathfrak{F} . Let T be a one to one map of Ω onto Ω which, together with its inverse T^{-1} are \mathfrak{F} -measurable and P measure preserving. For any random variable (real F-measurable function) X on Ω , let TX be the function on Ω defined by $TX(\omega) = X(T\omega)$ so that $[TX \in B] =$ $T^{-1}[X \in B]$ for any Borel set B. Consider an F-measurable set E with P(E) > 0. For any $\omega \in E$ consider the images of ω under iterates of $T: T\omega$, $T^2\omega$, \cdots , $T^n\omega, \cdots$. If n_1 is the smallest positive integer for which $T^{n_1}\omega \in E$ we say that the first recurrence time ν_1 of E is equal to n_1 . The Poincaré recurrence theorem ([2], p. 10) asserts that ν_1 is well defined and finite almost everywhere on E. In fact the stronger version of the Poincaré recurrence theorem asserts that, for almost all $\omega \in E$, there are infinitely many positive integers n such that $T^n\omega \in E$. Let us write down these integers according to their natural order, n_1 , $n_1 + n_2$, $n_1 + n_2 + n_3$, Then n_k is defined to be the value of the kth recurrence time ν_k of ω . Thus the successive recurrence times of $E: \nu_1, \nu_2, \cdots$ are well defined almost everywhere on E. If we introduce the conditional probability measure given E, P_E , on \mathfrak{F} by

$$(1) P_E(A) = P(E \cap A)/P(E),$$

then ν_1 , ν_2 , \cdots are well defined and finite valued with P_E probability one on the whole space Ω . In [3] it was proved that $\{\nu_k\}$ is a stationary sequence under P_E measure. In this paper we shall introduce a P_E measure preserving transformation S which associates with $\{\nu_k\}$ in a very natural way. It is shown that $S^{k-1}\nu_1 = \nu_k$, $k = 1, 2, \cdots$, so that the stationarity of $\{\nu_k\}$ is actually due to the P_E measure preserving property of S. Let $X_n = T^n X$. It is then shown that sequences $\{X_{\nu_k}\}$ and $\{X_{\nu_1+\cdots+\nu_{k-1}+1}+\cdots+X_{\nu_1+\cdots+\nu_k}\}$ are stationary under P_E measure. This leads to equalities (13) and (15), which resemble an equality of Wald for an independent sequence of random variables [1]. In fact, the proofs of (13) and (15) are also rather similar to the proof given in [1].

II. The Transformation S. Let \overline{E} , \underline{E} be subsets of Ω defined by

(2)
$$\bar{E} = E \cap \left(\bigcup_{n=1}^{\infty} T^{-n} E\right),$$

$$\underline{E} = E \cap \left(\bigcup_{n=1}^{\infty} T^n E\right).$$

Received March 15, 1960.

¹ Now at Syracuse University.