RECURRENT GAMES AND THE PETERSBURG PARADOX1

BY HERBERT ROBBINS

Columbia University

1. Introduction. A recurrent game \mathfrak{g} is defined by a sequence of trials of a certain, recurrent event \mathfrak{E} [1, pp. 238-242]. Let X_1 , X_2 , \cdots be the sequence of recurrence times of \mathfrak{E} , $S_n = X_1 + \cdots + X_n$ being the total number of trials up to and including the nth occurrence of \mathfrak{E} . The X_n are independent random variables with positive integer values and a common distribution:

(1)
$$p_{i} = P[X_{n} = i] \qquad (i, n = 1, 2, \dots),$$
$$p_{i} \ge 0, \qquad \sum_{1}^{\infty} p_{i} = 1.$$

We assume that at each occurrence of \mathcal{E} the player receives a reward which is a function of the number of trials since the previous occurrence of \mathcal{E} ; thus at the kth occurrence of \mathcal{E} the player receives the reward c_{x_k} , where $\{c_i\}$ is a given sequence of constants. The player also pays a fee f_k on the kth occurrence of \mathcal{E} , where $\{f_i\}$ is another given sequence of constants. On any trial on which \mathcal{E} does not occur no money changes hands. With these rules the game \mathcal{E} is determined by the three sequences of constants

(2)
$$g = \{p_i, c_i, f_i\}.$$
Let
$$V_n = \text{amount received by player at the } n \text{th trial}$$

$$= \begin{cases} c_{x_k} \text{ if for some } k, S_k = n \\ 0 \text{ otherwise,} \end{cases}$$
(3)
$$W_n = \text{amount paid by player at the } n \text{th trial}$$

$$= \begin{cases} f_k \text{ if for some } k, S_k = n \\ 0 \text{ otherwise,} \end{cases}$$

and let

 $T_n = ext{total amount received by player during the first } n ext{ trials}$ $= V_1 + \cdots + V_n$,

(4) $U_n = \text{total amount paid by player during the first } n \text{ trials}$ $= W_1 + \dots + W_n.$

Received June 9, 1960; revised October 4, 1960.

¹ This research was sponsored in part by the Office of Naval Research under Contract Number Nonr-266(59), Project Number 042-205. Reproduction in whole or in part is permitted for any purpose of the United States Government.