$P_{st}(y,\cdot) = \hat{P}_{st}(y,\cdot)$ if $y \not\in M_s$ and $\hat{P}_{rs}(x,M_s) = 0$ for all x it follows that $\hat{P}_{rt} = \hat{P}_{rs} \cdot \hat{P}_{st}$.

REFERENCE

[1] J. L. Doob, Stochastic Processes, John Wiley and Sons, New York, 1953.

A GENERALIZATION OF A THEOREM OF BALAKRISHNAN1

By N. Donald Ylvisaker²

New York University

1. Introduction. Given a stochastic process $\{X(t), t \in T\}$ on some probability space with second moment kernel

$$\mathcal{E}[X(s)\overline{X(t)}] = K(s,t),$$

a characterization is given of the function

$$m(t) = \varepsilon X(t).$$

This characterization includes the result of Balakrishnan [2] for the case of second order stationary, discrete or continuous parameter processes.

2. The characterization. Let T be an abstract set and let K be a positive definite kernel on $T \times T$. A function m on T is said to be an admissible mean value function for the kernel K if there exists a stochastic process $\{X(t), t \in T\}$ on some probability space with

$$\mathcal{E}[X(s)\overline{X(t)}] = K(s,t)$$
 and $\mathcal{E}X(t) = m(t)$.

LEMMA 1. m is an admissible mean value function for the kernel K if and only if $K(s,t) - m(s)\overline{m(t)}$ is positive definite.

PROOF. if $K(s, t) - m(s)\overline{m(t)}$ is a positive definite kernel on $T \times T$, let $\{X(t), t \in T\}$ be a Gaussian process with mean function m and covariance kernel $K(s, t) - m(s)\overline{m(t)}$, ([3], p. 72). Then

$$\begin{split} \varepsilon[X(s)\overline{X(t)}] &= \varepsilon[X(s) - m(s)][\overline{X(t)} - m(t)] + m(s)\overline{m(t)} \\ &= K(s, t). \end{split}$$

Conversely, if m is admissible,

$$\mathcal{E}[X(s) - m(s)][\overline{X(t) - m(t)}] = K(s, t) - m(s)\overline{m(t)}$$

is positive definite.

Received January 4, 1961; revised May 29, 1961.

¹ This research was sponsored by the Office of Naval Research under Contract Number Nonr 266(33), Project Number NR 042-034, while the author was at Columbia University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

² Now at the University of Washington.