MERGING OF OPINIONS WITH INCREASING INFORMATION¹

By David Blackwell and Lester Dubins

University of California, Berkeley

1. History. One of us [1] has shown that if Zn, $n=1,2,\cdots$ is a stochastic process with D states, $0, 1, \cdots, D-1$ such that $X=\sum_{n=1}^{\infty} Z_n/D^n$ has an absolutely continuous distribution with respect to Lebesgue measure, then the conditional distribution of $R_k=\sum_{n=1}^{\infty} Z_{k+n}/D^n$ given Z_1, \cdots, Z_k converges with probability one as $k\to\infty$ to the uniform distribution on the unit interval, in the sense that for each λ , $0<\lambda\leq 1$, $P(R_k<\lambda\mid Z_1,\cdots,Z_k)\to\lambda$ with probability 1 as $k\to\infty$. It follows that the unconditional distribution of R_k converges to the uniform distribution as $k\to\infty$. If $\{Z_n\}$ is stationary, the distribution of R_k is independent of k, and hence uniform, a result obtained earlier by Harris [3]. Earlier work relevant to convergence of opinion can be found in [4, Chap. 3, Sect. 6].

Here we generalize these results and also show that the conditional distribution of R_k given Z_1 , \cdots , Z_k converges in a much stronger sense. All probabilities in this paper are countably additive.

2. Statement of the theorem. Let \mathfrak{B}_i be a σ -field of subsets of a set X_i , $i=1,2,\cdots$; and let $(X,\mathfrak{B})=(X_1\times X_2\times\cdots,\mathfrak{B}_1\times \mathfrak{B}_2\times\cdots)$. Suppose (X,\mathfrak{B},P) is a probability space and let P_n be the marginal distribution of $(X_1\times\cdots\times X_n,\mathfrak{B}_1\times\cdots\times \mathfrak{B}_n)$; that is, $P_n(A)=P(A\times X_{n+1}\times\cdots)$ for all $A\in\mathfrak{B}_1\times\cdots\times \mathfrak{B}_n$. The probability P is predictive if for every $n\geq 1$, there exists a conditional distribution P^n for the future $X_{n+1}\times\cdots$ given the past X_1,\cdots,X_n ; that is, if there exists a function $P^n(x_1,\cdots,x_n)(C)$ where (x_1,\cdots,x_n) ranges over $X_1\times\cdots\times X_n$ and C ranges over $\mathfrak{B}_{n+1}\times\cdots$ with the usual three properties: $P^n(x_1,\cdots,x_n)(C)$ is $\mathfrak{B}_1\times\cdots\times \mathfrak{B}_n$ -measurable for fixed C; a probability distribution on $(X_{n+1}\times\cdots;\mathfrak{B}_{n+1}\times\cdots)$ for fixed (x_1,\cdots,x_n) ; and for bounded \mathfrak{B} -measurable ϕ

(1)
$$\int \phi \ dP = \int [(\phi(x_1, \dots, x_n, x_{n+1}, \dots) \ dP^n \ (x_{n+1}, \dots \mid x_1, \dots, x_n)] \cdot dP_n \ (x_1, \dots, x_n)$$

holds.

The assumption that P is predictive is mild and applies to all natural probabilities known to us. It is easy to verify that any probability which is absolutely continuous with respect to a predictive probability is also predictive.

Received December 12, 1961.

www.jstor.org

¹ This paper was prepared with the partial support of the Office of Naval Research (Nonr-222-43) for Mr. Blackwell; and with the partial support of the National Science Foundation, Grant G-14648 for Mr. Dubins. This paper in whole or in part may be reproduced for any purpose of the United States Government.