ON THE LIFTING PROPERTY (V)1

By A. IONESCU TULCEA

University of Illinois

- 1. Let (X, \mathfrak{B}, μ) be a measure space (i.e. X is a set, \mathfrak{B} a σ -algebra of subsets of X, μ a positive countably additive measure on \mathfrak{B}). Let $\mathfrak{B}_0 = \{B \in \mathfrak{B} \mid \mu(B) < \infty\}$ and $\mathfrak{N} = \{A \in \mathfrak{B} \mid \mu(A) = 0\}$. For $A \in \mathfrak{B}$, $B \in \mathfrak{B}$ we write $A \equiv B$ if $A\Delta B = (A B) \cup (B A) \in \mathfrak{N}$; this is an equivalence relation in \mathfrak{B} . We shall denote by $B \to \tilde{B}$ the canonical mapping of \mathfrak{B} onto the quotient σ -algebra $\mathfrak{B}/\mathfrak{N}$. Throughout this paper we shall assume that the measure space (X, \mathfrak{B}, μ) satisfies the following conditions:
- (a) The measure space (X, \mathfrak{B}, μ) is complete (i.e., the relations $A \in \mathfrak{N}$ and $B \subset A$ imply $B \in \mathfrak{N}$);
 - (b) A set $E \subset X$ belongs to \mathfrak{B} if and only if $E \cap B \in \mathfrak{B}$ for every $B \in \mathfrak{B}_0$;
 - (c) For every $E \in \mathfrak{G}$, $\mu(E) = \sup \{\mu(B) \mid Bc \subset A, B\varepsilon \mathfrak{G}_0\}$;
 - (d) The quotient σ -algebra $\mathfrak{B}/\mathfrak{N}$ is a complete lattice.

The measure space (X, \mathfrak{B}, μ) is then a localizable measure space in Segal's sense (see [21] and [13]).

Note that the above setting includes as a particular case (X, \mathfrak{G}, μ) a complete totally σ -finite measure space. Also, if X is a locally compact space with a given positive Radon measure, the conditions (a)-(d) are satisfied if we take for \mathfrak{G} the σ -algebra of all sets measurable with respect to that Radon measure and for μ the essential measure (see [1]).

In what follows we shall denote by M_R^{∞} the algebra of all bounded real-valued measurable functions defined on X. For $f \in M_R^{\infty}$, $g \in M_R^{\infty}$ we write $f \equiv g$ if f and g coincide almost everywhere; this defines an equivalence relation in M_R^{∞} . As usual, we denote by L_R^{∞} the quotient space of M_R^{∞} under this equivalence relation, and by $f \to \tilde{f}$ the canonical mapping of M_R^{∞} onto L_R^{∞} . Endowed with the essential supremum norm, L_R^{∞} is a cummutative Banach algebra.

Let now $T: f \to T_f$ be a mapping of M_R^{∞} into M_R^{∞} and consider the following axioms:

- (I) $T_f \equiv f$;
- (II) $f \equiv g \text{ implies } T_f = T_g$;
- (III) $T_1 = 1$;
- (IV) $f \geq 0$ implies $T_f \geq 0$;
- $(V) T_{\alpha f + \beta g} = \alpha T_f + \beta T_g;$
- (VI) $T_{fg} = T_f T_g$.

Let us recall that a mapping $T: f \to T_f$ of M_R^{∞} into M_R^{∞} satisfying (I)-(VI) is called a *lifting of* M_R^{∞} ; a mapping $T: f \to T_f$ of M_R^{∞} into M_R^{∞} satisfying (I)-(V) is called a *linear lifting of* M_R^{∞} (see [10]).

Received 21 December 1964

¹ Research supported by the U. S. Army Research Office (Durham), under contract DA-31-124-ARO-D-288.

819