A NOTE ON MINIMUM DISCRIMINATION INFORMATION¹

By S. Kullback and M. A. Khairat²

The George Washington University

This note contains a simple proof of the minimum discrimination information theorem in Kullback (1959), pp. 36–39 and an affirmative answer to a suggestion in a personal communication from Dr. I. J. Good that the theorem could be applied even to random elements of a Banach space.

Let X be a space of points x, S a σ -field of sets of X, and P_2 a probability measure on S. Let T(x) be a real valued S-measurable function such that

$$(1) M_2 = \int_X \exp(T(x)) dP_2 < \infty$$

and let the probability measure P^* be defined by

(2)
$$P^*(A) = \int_A (\exp(T(x))/M_2) dP_2, \quad \text{for } A \in S.$$

Suppose that T(x) is P^* -integrable, and let

(3)
$$\theta = \int_{X} T(x) dP^{*}.$$

Now let P_1 be an arbitrary probability measure on S. If $P_1 \ll P_2$ define

(4)
$$I(P_1, P_2) = \int_X [\log (dP_1/dP_2)] dP_1,$$

otherwise define $I(P_1, P_2) = \infty$. It is clear that $I(P^*, P_2)$ is finite; in fact, from (2) and (3),

$$(5) I(P^*, P_2) = \theta - \log M_2.$$

THEOREM. If P_1 is a probability measure on S such that T is P_1 -integrable and

$$\int_X T(x) dP_1 = \theta,$$

then

(7)
$$I(P_1, P_2) \ge I(P^*, P_2) = \theta - \log M_2$$

with equality if and only if $P_1 = P^*$ on S.

PROOF. If $I(P_1, P_2) = \infty$ there is nothing to prove. Suppose then that $I(P_1, P_2) < \infty$. In this case $P_1 \ll P_2$, and we write $f(x) = dP_1/dP_2$. Then

(8)
$$I(P_1, P_2) = \int_X f(x) \log f(x) dP_2$$

and

(9)
$$I(P^*, P_2) = \int_X f^*(x) \log f^*(x) dP_2$$

Received 3 December 1964; revised 1 September 1965.

¹ This work was supported in part by the National Science Foundation Grant GP-3223.

² Now at A'in Shams University, Abbassia-Cairo.