A NOTE ON A BIASED ESTIMATOR IN SAMPLING WITH PROBABILITY PROPORTIONAL TO SIZE WITH REPLACEMENT

By M. T. Subrahmanya

Indian Statistical Institute, Calcutta

A finite population of N units U_1 , U_2 , \cdots , U_N is considered. Let Y_i denote the value of the characteristic under study for the *i*th unit. It is desired to estimate the total $Y = \sum_{i=1}^{N} Y_i$ on the basis of a sample.

When sampling with equal probability, with replacement after each draw, the total Y may be estimated unbiasedly by

$$\hat{Y}' = (N/n) \sum_{i=1}^n y_i,$$

where y_i is the value recorded at the *i*th draw. Basu (1958) has shown that the estimator \hat{Y}_d based on distinct units in the sample, namely,

$$\hat{Y}_{d}' = (N/n_d) \sum_{i=1}^{n_d} y_{(i)}$$

is unbiased for Y and has on the average a smaller mean-square error than \hat{Y}' . Here n_d stands for the number of distinct units in a sample of size n and the suffix (i) indicates the *i*th distinct unit in the sample.

When sampling with probability proportional to size, with replacement after each draw (pps for brevity), the total Y may be estimated unbiasedly by

$$\hat{Y} = n^{-1} \sum_{i=1}^{n} (y_i/p_i),$$

where p_i is the probability of selecting the unit occurring at the *i*th draw. Basu (1958) presents for this design an unbiased estimator Y_d superior to \hat{Y} , which makes use only of the values recorded for the n_d distinct units. This estimator \hat{Y}_d is—contrary to what is stated in Dalenius (1962) and in some other papers—not identical with

$$\hat{y}_d = n_d^{-1} \sum_{i=1}^{n_d} [y_{(i)}/p_{(i)}].$$

We stress here that \hat{y}_d is not the same as \hat{Y}_d , except in some special cases. For instance, when $n_d = n - 1$,

$$\hat{Y}_d = n^{-1} \sum_{i=1}^{n-1} y_{(i)} / \sum_{i=1}^{n-1} p_{(i)} + [(n-1)/n] \hat{y}_d.$$

In fact, \hat{y}_d is in general not unbiased. In view of the relative simplicity with which \hat{y}_d may be computed, we will study the properties of \hat{y}_d in some detail.

To begin with, we make the following remarks:

- (a) \hat{Y} , \hat{Y}_d and \hat{y}_d are identical when n=1 or 2 or when $Y_i/P_i=Y$ for $i=1,2,\cdots,N$.
 - (b) \hat{Y}_d and \hat{y}_d are identical when $p_i = N^{-1}$ for $i = 1, 2, \dots, N$.

Received 13 October 1965; revised 4 February 1966.