A NOTE ON UNDISCOUNTED DYNAMIC PROGRAMMING

By Ashok Maitra²

Mathematisch Centrum, Amsterdam

1. Introduction. We consider a system with a finite number of states $1, 2, \dots, S$. Once a day, we observe the current state s of the system and choose an action a from an arbitrary set A of actions. As a result, two things happen: (1) we receive an immediate income i(s, a), and (2) the system moves to a new state s' with probability q(s' | s, a). Assume that the incomes are bounded, that is, there exists a positive number M such that $|i(s, a)| \leq M$, $s = 1, 2, \dots, S$, $a \in A$. The problem is to maximise the average rate of income (to be defined below).

Denote by F the set of all functions f on S into A. A policy $\pi = \{f_1, f_2, \dots\}$ is a sequence of functions $f_n \in F$. Thus, to use policy π is to choose the action $f_n(s)$ on the nth day, if the system is in state s on that day. We shall call a policy $\pi = \{f_n\}$ stationary if $f_n = f$, $n = 1, 2, \dots$, and denote it by $f^{(\infty)}$.

With each $f \in F$, associate (1) the $S \times 1$ vector r(f), whose sth coordinate is i(s, f(s)) and (2) the $S \times S$ stochastic matrix Q(f), whose (s, s') element is q(s'|s, f(s)). Hence, if we use the policy $\pi = \{f_n\}$, the *n*-step transition matrix of the system is $Q_n(\pi) = \prod_{k=1}^n Q(f_k)$. In particular, if our policy is stationary, the system becomes a discrete time-parameter Markov chain with stationary transition probabilities.

Given a policy π , let us denote by $W_n(\pi)$ the $S \times 1$ vector of incomes on the nth day, when the policy π is used. Set

$$x(\pi) = \lim_{N \to \infty} N^{-1} \sum_{n=1}^{N} W_n(\pi)$$

whenever the limit exists. Blackwell [1] has shown that the limit exists whenever π is a stationary policy. In the case of a stationary policy, $x(f^{(\infty)})$ is the vector of average rates of income, when the policy $f^{(\infty)}$ is used.

We shall say that a policy $f_0^{(\infty)}$ is *optimal* among stationary policies if $x(f_0^{(\infty)}) \ge x(f^{(\infty)})$ for all $f \in F$ (for any two $S \times 1$ vectors w_1 and w_2 , we shall write $w_1 \ge w_2$ if every coordinate of w_1 is at least as large as the corresponding coordinate of w_2 , and $w_1 > w_2$ if $w_1 \ge w_2$ and $w_1 \ne w_2$).

Blackwell [1] showed that, if A is finite, there exists an optimal policy among stationary policies. When A is not finite, there may not exist an optimal policy. Consider, for instance, a system with a single state and $A = \{1, 2, \dots\}$. Choice of action i brings an income of 1 - 1/i dollars. It is clear that there is no optimal stationary policy.

The purpose of this note is to prove:

THEOREM. Let A be arbitrary. Given $\epsilon > 0$, there exists a stationary policy $f_{\epsilon}^{(\infty)}$

Received 24 November 1965.

¹ Report SP 89 of the Statistics Department, Mathematisch Centrum, Amsterdam.

² Now with Indian Statistical Institute, Calcutta.