CONSENSUS OF SUBJECTIVE PROBABILITIES: A CONVERGENCE THEOREM¹

By Torsten Norvig

Wellesley College

We investigate here an 'economic' model with m individuals and n objects. We assume that each individual has a certain endowment and places a certain value on each object, and ask whether one can make dynamic assumptions about the behavior of the individuals which will insure that in the course of time 'social' values will be attached to the objects—values which in some sense represent a consensus of the values given them by individuals.

We consider a simple dynamic mechanism and show that in the course of time it leads to unique 'social' values for each object. The dynamic mechanism, although extremely simple, acts as an efficient 'feed-back' mechanism, adjusting the values towards the 'social' values.

The model can be interpreted [3] as an economic exchange model in which the consumers' preferences are given by linear utility functions. Here, however, we interpret it in terms of the type of consensus represented by the pari-mutuel method of betting on horse races. In this system the final 'track's odds' on a given horse are proportional to the amount bet on that horse.

In formulating the pari-mutuel model we assume that the m individuals involved are bettors, labeled B_1, \dots, B_m , concerned with one particular race involving n horses, labeled H_1, \dots, H_n . We assume further that each B_i has arrived at an estimate of the relative merits of each of the H_j 's which he expresses in quantitative terms. Specifically, we are given an $m \times n$ subjective probability matrix $P = (p_{ij})$ where p_{ij} is the probability, in the opinion of B_i , that H_j will win the race. We may as well assume that each column of the matrix P contains at least one positive entry. If this were not so then, say $p_{ij} = 0$ for all i, and we could then eliminate H_j from consideration entirely.

Having determined his subjective probability distribution, B_i will now bet the amount b_i , a fixed positive number called B_i 's budget, in a way which maximizes his subjective expectation. This means, of course, that B_i will not necessarily bet the whole amount b_i on that H_j for which p_{ij} is largest. In general, B_i will 'bet the odds', that is he will consider the current track odds, or, more conveniently, the current track probabilities. If these are π_1, \dots, π_n , he will examine the ratios p_{ij}/π_j and in some way distribute b_i among those H_j for which this ratio is a maximum. We shall refer to this course of action as B_i 's strategy. It will be convenient to choose the unit of money so that $\sum_{i=1}^{m} b_i = 1$.

Received 18 January 1966; revised 15 June 1966.

¹ This paper is based on the author's thesis done under David Gale at Brown University. Part of the research was supported by a N.S.F. Fellowship. I wish to thank C. J. Everett for pointing out that my proof of a special case can be extended to a proof for the general case.