A THEOREM OF LÉVY AND A PECULIAR SEMIGROUP1

By DAVID A. FREEDMAN

University of California, Berkeley

1. Introduction. Let I be a finite or countably infinite set. For each $t \ge 0$ let P(t) be a stochastic matrix on I, such that P(t + s) = P(t)P(s), P(0) is the identity matrix, and $P(t) \to P(0)$ coordinatewise as $t \to 0$. Then P is called a standard stochastic semigroup on I.

The result of Lévy (1958) referred to in the title is:

(1) THEOREM. For each pair i, j with $i \neq j$, there are only two possibilities: either P(t, i, j) = 0 for all $t \geq 0$, or P(t, i, j) > 0 for all t > 0.

One object of this note is to sketch an alternative proof of this fact. For historical discussion and some of the known proofs, see (Chung, 1960).

As is well known, P has a coordinatewise derivative at 0, called the infinitesimal generator Q. Another object of this note is to sketch the construction which proves

(2) Theorem. There is a standard stochastic semigroup P on $I = \{1, 2, \dots\}$ whose infinitesimal generator Q is given by:

(3)
$$Q(i, i) = -\infty \quad \text{for all} \quad i \quad \text{in} \quad I$$

$$Q(i,j) = 0 for all i \neq j in I.$$

These results are discussed together because they involve the same technique, restricting a Markov chain to a subset of its state space. For simplicity, suppose all states are recurrent.

2. Restricting a Markov chain. Give I the discrete topology, and let $\bar{I} = I$ when I is finite, $\bar{I} =$ one point compactification of I when I is infinite. Let $\{X(t):0 \leq t < \infty\}$ be an \bar{I} -valued stochastic process on a probability triple $(\Omega, \mathfrak{F}, \mu)$, which is a Markov chain with stationary standard transitions P. For technical safety, suppose the sample functions of X are quasiregular (the definition is in Section 5). Let J be a finite subset of I, and let X_J be the restriction of X to J, that is, X watched only when in J. More formally, let $\tau_J(t)$ be the greatest s such that the Lebesgue measure of $\{u:0 \leq u \leq s, X(u) \in J\}$ is t. Then $X_J(t) = X[\tau_J(t)]$. From the strong Markov property, X_J is a Markov chain with stationary transitions, call them P_J . Plainly, P_J is a standard stochastic semigroup on J. Call its infinitesimal generator Q_J , and say that P_J (respectively, Q_J) is P (respectively, P) restricted to P. Plainly, for P0 is P1 (respectively, P3 is not hard to check that

$$Q \le Q_J.$$

Received 14 July 1966.

¹ Prepared with the partial support of the National Science Foundation, Grant GP-5059; and a Sloan Foundation Grant.