ON THE LEAST SQUARES ESTIMATION OF NON-LINEAR RELATIONS

By C. VILLEGAS

Instituto de Matemática y Estadística, Montevideo¹

1. Introduction. Consider a non-linear relation

$$(1.1) y = f(x_1, \dots, x_m; \alpha_1, \dots, \alpha_p)$$

among the real variables x_1, \dots, x_m and y, where f is a known function and α_1 , \dots , α_p are unknown parameters. The problem of estimating these parameters by least squares methods has been considered recently by Hartley and Booker [1], assuming that the variables x_j are not subject to error and that the variable y is observed with an error which is normally distributed. In this paper, which is only a complement to a previous paper on linear relations [2], these assumptions will be dropped, but it will be assumed instead that replicated observations are available.

2. Notation and model. Suppose that, in order to estimate the non-linear relation (1.1), we have performed an experiment with n replications, which may possibly have an incomplete block design, and suppose that, from the usual statistical analysis of the data, we have obtained k (m+1) estimators x_{ijn} , y_{in} ($i=1,\dots,k;j=1,\dots,m$) converging in probability, when n tends to infinity, to values x_{ij} , y_i which satisfy the non-linear relation (1.1). Using the vector space approach of [2], we shall consider an auxiliary p-dimensional Euclidian space $\mathfrak U$ with an orthonormal basis $\mathbf u_1,\dots,\mathbf u_p$ and an m-dimensional Euclidian space $\mathfrak U$ with an orthonormal basis $\mathbf v_1,\dots,\mathbf v_m$ and we shall define on them the linear functionals A, X_{in}, X_i by $A\mathbf u_h = \alpha_h$ ($h = 1, \dots, p$); $X_{in} \mathbf v_j = x_{ijn}$ and $X_i \mathbf v_j = x_{ij}$. Then we have

$$(2.1) y_i = f(X_i, A).$$

We shall assume that f is a continuously differentiable function. The value of the differential of f at an arbitrary point $(X, A^*; \Delta X, \Delta A)$ will be denoted by $\Delta X f_X(X, A^*) + \Delta A f_A(X, A^*)$, where $f_A(X, A^*)$ ε $\mathfrak U$ and $f_X(X, A^*)$ ε $\mathfrak U$. We shall write simply

$$\mathbf{f}_i = f_A(X_i, A), \quad \mathbf{f}_{Xi} = f_X(X_i, A),$$

and we shall assume that the vectors \mathbf{f}_i do not lie on any proper subspace of \mathfrak{U} . We assume, in addition, that the joint distribution of the 2k random variables $n^{\frac{1}{2}}\Delta y_{in}$ (where $\Delta y_{in}=y_{in}-y_i$) and $n^{\frac{1}{2}}\Delta X_{in}$ (where $\Delta X_{in}=X_{in}-X_i$) con-

Received 2 May 1967; revised 29 July 1968.

¹ Now visiting at the University of Rochester. This work has been made with a special support from the Universidad de la República, Montevideo.

462