DISCRETE DYNAMIC PROGRAMMING WITH A SMALL INTEREST RATE¹

BY BRUCE L. MILLER AND ARTHUR F. VEINOTT, JR.

The RAND Corporation and Stanford University

- **1.** Introduction. In a fundamental paper on stationary finite state and action Markovian decision processes, Blackwell [1] defines an optimal policy to be one that maximizes the expected total discounted rewards for all sufficiently small interest rates $\rho > 0$. He also establishes the existence of a stationary optimal policy by a limit process that does not give a finite algorithm. The purpose of this paper is to prove this result constructively by devising a finite policy improvement method for finding stationary optimal policies. The algorithm is based on the representation of the vector of expected discounted returns under a stationary policy as a Laurent series in the interest rate for all small enough $\rho > 0$.
- **2. Preliminaries.** Consider a system which is observed at each of a sequence of points in time labeled $1, 2, \dots$. At each of these points the system is found to be in one of S states labeled $1, \dots, S$. Each time the system is observed in state s, an action a is chosen from a finite set A_s of possible actions and a reward r(s, a) is received. The conditional probability that the system is observed in state t at time N+1 given that it is found in state s at time t, that action t is taken at that time, and given the observed states and actions taken at times t, t, t, and t, and t, t, and t,

Let $F = \mathbf{X}_{s=1}^S A_s$. A policy is a sequence $\pi = (f_1, f_2, \cdots)$ of elements f_N of F. Using the policy π means that if the system is observed in state s at time N, the action chosen at that time is $f_N(s)$, the sth component of f_N . We write f^{∞} for the stationary policy (f, f, \cdots) and (g, f^{∞}) for the policy (g, f, f, \cdots) .

For any $f \in F$, let r(f) be the S component column vector whose sth component is r(s, f(s)), and let P(f) be the $S \times S$ Markov matrix whose sth element is p(t | s, f(s)). If $\pi = (f_1, f_2, \cdots)$, let $P^N(\pi) = P(f_1) \cdots P(f_N)$ for N > 0 and $P^0(\pi) = I$.

Denote by $\rho > 0$ the rate of interest and let $\beta = (1 + \rho)^{-1}$ be the associated discount factor. If $\rho = \infty$, $\beta \equiv 0$. We suppress the dependence of β on ρ in the sequel for simplicity.

The vector of expected total discounted rewards starting from each state and using the policy π is

$$V_{\rho}(\pi) = \sum_{N=0}^{\infty} \beta^{N} P^{N}(\pi) r(f_{N+1}).$$

A policy π^* is called ρ -optimal if $V_{\rho}(\pi^*) \geq V_{\rho}(\pi)$ for all π , and optimal if it is ρ -optimal for all sufficiently small $\rho > 0$.

Received 6 June 1968.

¹ This research was supported by the United States Air Force under project RAND Contract No. F44620-67-C-0045, the National Science Foundation under Grant GK-1420, and the Office of Naval Research under Contract Nonr 225(77) (NR-347-010).