ON PARTITIONING A SET OF NORMAL POPULATIONS BY THEIR LOCATIONS WITH RESPECT TO A CONTROL¹

By Yung Liang Tong

University of Nebraska

0. The problem and the approaches. This paper is concerned with a problem of partitioning a set of normal populations into two subsets according to their locations with respect to a control population, based on indifference zone formulation. Let Π_0 , Π_1 , \cdots , Π_k be (k+1) normal populations with means μ_0 , μ_1 , \cdots , μ_k and a common variance σ^2 ; and let Π_0 denote the standard or control population. For arbitrary but fixed constants δ_1^* and δ_2^* such that $\delta_1^* < \delta_2^*$, we define three disjoint and exhaustive subsets Ω_B , Ω_I and Ω_G of the set

(0.1)
$$\Omega = (\Pi_1, \Pi_2, \cdots, \Pi_k)$$
 by
$$\Omega_B = (\Pi_i : \mu_i \le \mu_0 + {\delta_1}^*)$$

(0.2)
$$\Omega_{I} = (\Pi_{i}: \mu_{0} + \delta_{1}^{*} < \mu_{i} < \mu_{0} + \delta_{2}^{*})$$
$$\Omega_{G} = (\Pi_{i}: \mu_{i} \ge \mu_{0} + \delta_{2}^{*}).$$

After observations have been taken, the set Ω is partitioned into two disjoint subsets S_B and S_G .

DEFINITION 0.1. A decision is a correct decision (CD) if $\Omega_B \subset S_B$ and $\Omega_G \subset S_G$. An equivalent definition to Definition 0.1 is that $S_B \subset (\Omega_B \cup \Omega_I)$ and $S_G \subset (\Omega_G \cup \Omega_I)$. It is noted that the open interval $(\mu_0 + \delta_1^*, \mu_0 + \delta_2^*)$ is considered as the indifference zone and a correct decision puts no restrictions on those populations in the set Ω_I . With this consideration, it will be consistent to give the following

DEFINITION 0.2. A population $\Pi_i \varepsilon \Omega$ is misclassified if $\Pi_i \varepsilon (\Omega_B \cap S_G) \cup (\Omega_G \cap S_B)$.

Let P^* be an arbitrary but preassigned constant such that $2^{-k} < P^* < 1$. The statistical problem is to find a procedure R which consists of a sampling procedure and a terminal decision rule such that the appropriate probability requirement below is satisfied.

(1) When σ^2 is known,

(0.3)
$$P[CD \mid \mathbf{v}, \sigma^2; R] \ge P^*$$
 for every mean vector \mathbf{v} .

(2) When σ^2 is unknown,

(0.4)
$$P[CD \mid \mathbf{y}, \sigma^2; R] \ge P^*$$
 for every \mathbf{y} and every $\sigma^2 > 0$.

1300

Received 18 December 1967; revised 3 January 1969.

¹ This paper forms a part of the author's doctoral thesis submitted to the University of Minnesota. The research was partially supported by the National Science Foundation under grant No. NSF-GP-3813.