ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUTIONS¹

By Siegfried Schach²

Stanford University

- **0.** Introduction. Let X_1 , \cdots , X_m and Y_1 , \cdots , Y_n be two independent samples from circular distributions. A common problem consists in deciding whether the two samples have the same underlying distribution or not. In this paper we are primarily interested in non-parametric tests for the detection of rotation alternatives. Although there are "natural" isomorphisms between the circle and the interval $[0, 2\pi)$, the usual rank tests for detecting shift alternatives applied to observations in $[0, 2\pi)$ are not satisfactory, partly because they depend on an arbitrary cut-off point on the circle. Run tests can be adapted very easily to the circular two-sample problem, but their large-sample efficiency is zero for smooth families of distributions (Bahadur [1]). Kuiper [6] and Watson [12] suggested suitable modifications for the Kolmogorov-Smirnov and Cramérvon Mises tests. In this paper we use the invariance principle to derive a class of test statistics which is closely related to the class of rank tests for distributions on the real line.
- 1. Notation and assumptions. We define the unit circle as the set C of complex numbers of modulus 1. Then the natural isomorphism between $[0, 2\pi)$ and C is given by the mapping $x \to e^{ix}$. Under this isomorphism distributions and densities on C can be represented by cdf's and densities on $[0, 2\pi)$. For convenience we extend densities $f(\cdot)$ to all of R by the periodicity requirement $f(2k\pi + x) = f(x)$ $(k = \pm 1, \pm 2, \cdots)$.

In this paper we always assume that

- (1.1) f(x) > 0 for almost all x, and not a constant.
- (1.2) f'(x) exists and is continuous for all x.

(1.3)
$$\int_0^{2\pi} [f'(x)/f(x)]^2 dx = \inf(f) < \infty.$$

$$(1.4) \quad m/(m+n) = \lambda_N \to \lambda \quad \text{with} \quad 0 < \lambda < 1, \quad \text{as} \quad N = m+n \to \infty.$$

2. Transformation group and invariant tests. As our class T of transformations of the sample space we take the set of all homeomorphisms of the circle onto itself, i.e., all bicontinuous, one-to-one mappings of C onto C. Any element $t \in T$ can be written in the form: $e^{ix} \to e^{i(c+i'(x))}$, $x \in [0, 2\pi]$, where $0 \le c < 2\pi$ and $t'(\cdot)$ is a bicontinuous (monotone) one-to-one mapping of $[0, 2\pi]$ onto

Received 16 September 1968; revised 18 April 1969.

¹ Prepared under U. S. Public Health Service Grant USPHS-GM-14554-02 and National Science Foundation Grant No. GP-6859.

² Now at The Johns Hopkins University.