A NOTE ON ESTIMATING A UNIMODAL DENSITY¹

By EDWARD J. WEGMAN

University of North Carolina

1. Introduction. This paper is concerned with the problem of estimating a unimodal density with unknown mode. Robertson [5] has shown in the case that the mode is known a solution can be represented as a conditional expectation given a σ -lattice. Brunk [2] discusses such conditional expectations as well as other problems.

A σ -lattice, \mathfrak{L} , of subsets of a measure space $(\mathfrak{Q}, \mathfrak{Q}, \mu)$ is a collection of subsets of \mathfrak{Q} closed under countable unions and countable intersections and containing both ϕ and \mathfrak{Q} . If \mathfrak{Q} is the real line, then the collection of intervals containing a fixed point, m, is a σ -lattice which we shall denote as $\mathfrak{L}(m)$. A function, f, is measurable with respect to a σ -lattice, \mathfrak{L} , if the set, [f>a], is in \mathfrak{L} for each real a. In this paper, we shall say a function f is unimodal at f when f is measurable with respect to $\mathfrak{L}(f)$. This definition is equivalent to a more usual definition as seen in the following easily verified remark.

Remark. A function f is unimodal at M if and only if f is non-decreasing at x for x < M and f is nonincreasing at x for x > M.

Let Ω be the real line and let $\mu = \lambda$ be Lebesgue measure. Let L_2 be the set of square integrable functions and $L_2(\mathfrak{L})$ be those members of L_2 which are also measurable with respect to \mathfrak{L} . We shall adopt the following definition of conditional expectation with respect to a σ -lattice.

DEFINITION 1.1. If $f \in L_2$, then $g \in L_2(\mathfrak{L})$ is equal to $E(f \mid \mathfrak{L})$, the conditional expectation of f give \mathfrak{L} if and only if

(1.1)
$$\int f \cdot \theta(g) \ d\lambda = \int g \cdot \theta(g) \ d\lambda$$

for every θ , a real-valued function such that $\theta(g) \in L_2$ and $\theta(0) = 0$, and

for each $A \in \mathcal{L}$ with $0 < \lambda(A) < \infty$.

(Brunk [1] shows such a function, g, exists and is unique up to a set of Lebesgue measure 0). In this paper, the estimation of the density will be based upon a strongly consistent estimate of the mode such as those of Nadaraya [3] or of Venter [6]. (The author is aware of a third estimate, as of now unpublished, given by Robertson and Cryer).

2. An estimate of the density. The density, f, to be estimated has mode M which is unknown. Let us assume $y_1 \leq y_2 \leq \cdots \leq y_n$ is the ordered sample of

Received 18 November 1968.

¹ This research arises in part from the author's doctoral dissertation submitted to the Department of Statistics, University of Iowa. It was supported in part by PHS Research Grant No. GM-14448-01 from the Division of General Medical Sciences and in part by U.S. Air Force Grant AFOSR-68-1415.