THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCHASTIC PROCESSES¹

BY WALTER PHILIPP

University of Illinois

1. Introduction. Let $\langle \xi_n | n = 1, 2, \dots \rangle$ be a sequence of random variables centered at expectations with finite variances. Suppose that

(1)
$$s_N^2 = E\left(\sum_{n \le N} \xi_n\right)^2 \to \infty \qquad (N \to \infty)$$

$$(2) s_{N+1}/s_N \to 1 (N \to \infty)$$

and that

(3)
$$s_{MN}^2 = E(\sum_{n=M+1}^N \xi_n)^2 = (s_N^2 - s_M^2)(1 + o(1))$$
 (as $s_N^2 - s_M^2 \to \infty$).

Let M_{ab} be the σ -algebra generated by the events $\{\xi_n < \alpha\}$, $\alpha \le n \le b$. We say that the Borel-Cantelli Lemma holds for the process $\langle \xi_n \rangle$ if $\sum P(A_k) = \infty$ implies that $P(A_k \text{ i.o.}) = 1$ where $A_k \in M_{n_{k-1}n_k-1} (1 \le n_0 < n_1 < \cdots)$.

The standard proof of the law of the iterated logarithm yields the following Theorem 0. Let $\langle \xi_n \rangle$ be any stochastic process satisfying (1)-(3) for which the Borel-Cantelli Lemma holds. Suppose that uniformly in M and x

(4)
$$P(s_{MN}^{-1} \sum_{n=M+1}^{N} \xi_n < x) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt + O((\log s_{MN})^{-1-\eta}), \eta > 0,$$

and that for some constants $C > 0$, $0 < \rho_N = O((\log \log s_N)^{\frac{1}{2}})$ and ϵ sufficiently large

$$(5) P(\max_{1 \leq n \leq N} \sum_{k \leq n} \xi_k > \epsilon) \leq CP(\sum_{k \leq N} \xi_k > \epsilon - \rho_N s_N).$$

Moreover, suppose that (5) holds with ξ_n replaced by $-\xi_n$. Then

(6)
$$P(\limsup_{N\to\infty} (2s_N^2 \log \log s_N^2)^{-\frac{1}{2}} \sum_{n\leq N} \xi_n = 1) = 1.$$

In short the law of the iterated logarithm holds for any process for which the Borel-Cantelli Lemma, the central limit theorem with a reasonably good remainder and a certain maximal inequality are valid. The proof of Theorem 0 can be found in Loève [4, pages 260–263] (see also [1], [5]) where instead of the exponential bounds we use the fact that for $\tau > 0$

$$P\left(\sum_{n=M+1}^{N} \xi_n > \tau s_{MN}\right) = (2\pi)^{-\frac{1}{2}} \tau^{-1} \exp\left(-\frac{1}{2}\tau^2\right) (1 + \theta \tau^{-2}) + O\left((\log s_{MN})^{-1-\eta}\right)$$

with $0 < \theta < 1$. This follows from (4) and the well-known [1, page 175] estimate

$$\int_{x}^{\infty} e^{-\frac{1}{2}t^{2}} dt = x^{-1} \exp(-\frac{1}{2}x^{2})(1 + \theta x^{-2}).$$

Moreover, we choose n_k to be the largest integer n with $s_n \leq c^k$, where c > 1 is the constant occurring in [4, page 261], $(s_n$ is not assumed to be monotone).

Received 16 December 1968.

¹ Research supported in part by the National Science Foundation Grant GP 7537.