EXTENSION OF A RESULT OF SENETA FOR THE SUPER-CRITICAL GALTON-WATSON PROCESS

By C. C. HEYDE

Australian National University

1. Introduction. Let $Z_0 = 1$, Z_1 , $Z_2 \cdots$ denote a super-critical Galton-Watson process whose non-degenerate offspring distribution has probability generating function $F(s) = \sum_{j=0}^{\infty} s^j \Pr(Z_1 = j)$, $0 \le s \le 1$, where $1 < m = EZ_1 < \infty$. The Galton-Watson process evolves in such a way that the generating function $F_n(s)$ of Z_n is the *n*th functional iterate of F(s) and, for the super-critical case in question, the probability of extinction of the process, q, is well known to be the unique real number in [0,1) satisfying F(q) = q. It is the main purpose of this paper to establish the following theorem which gives an ultimate form of the limit result for the case in question.

THEOREM 1. There exists a sequence of positive constants $\{c_n, n \ge 1\}$ with $c_n \to \infty$ and $c_n^{-1}c_{n+1} \to m$ as $n \to \infty$ such that the random variables $c_n^{-1}Z_n$ converge almost surely to a non-degenerate random variable W for which $\Pr(W=0) = q$ and which has a continuous distribution on the set of positive real numbers. Let s_0 be any fixed number in $(0, -\log q)$. Then, c_n can be taken as $[h_n(s_0)]^{-1}$ where $h_n(s)$ is the inverse function of $k_n(s) = -\log E\{\exp(-sZ_n)\}$.

This result constitutes an extension of the main result of Seneta [6] where convergence in distribution was established. It should be remarked that, when $EZ_1 = \infty$, it is not possible to find a sequence of positive constants $\{c_n\}$ for which $c_n^{-1}Z_n$ converges in distribution to a non-degenerate limit law ([7] Theorem 4.4). By way of comparison with Theorem 1, we note that:

THEOREM A. (Stigum [8], Kesten and Stigum [3]). As $n \to \infty$, $m^{-n}Z_n$ converges almost surely to a random variable W_1 for which $\Pr(W_1 = 0) = q$ or 1 and which, if $\Pr(W_1 = 0) < 1$, has a continuous density on the set of positive real numbers. Moreover, the following two conditions are equivalent:

- (i) $E(Z_1 \log Z_1) < \infty$.
- (ii) $\Pr(W_1 = 0) = q$.

Thus, when $E(Z_1 \log Z_1) = \infty$, the norming by m^n is not appropriate and a more subtle norming is required to obtain a non-degenerate limit law. Almost sure convergence in Theorem A is based on the fact (due to Doob) that the process $\{m^{-n}Z_n\}$ is a martingale. The process $\{h_n(s_0)Z_n\}$ is, as was noted in [6], a submartingale but the submartingale convergence theorem is only applicable when $E(Z_1 \log Z_1) < \infty$.

Received March 25, 1969.

739