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A MULTI-PARAMETER GAUSSIAN PROCESS!

By WoN JoON PARK

Wright State University
1. Introduction. Let (Q, &, P) be a probability space and let 4 be the p-dimen-
sional unit rectangle (p = 2). Wedenote by (4, <7, u,) the ordinary Lebesgue measure
space. Let {X(u, w): ue A} be a Gaussian process defined on (Q, #, P) with the
properties:

(1.1) X(u,w)=0 as. forevery u in A, where
Ao ={(uy, -+, u,)eA:u; =0 for some j with 1 <j < p}.
(1.2)  E[X(u, )] = [ X(u, 0)dP(w) =0 for every‘ u in A
(1.3) E[X(u, )X (v, )] = min(uy, v,) - min(u,, v,) = R(u, v)
forevery u=(uy,""*,u,) and v=(vy,""*,v,) in A

By considering an expansion in terms of Haar functions on A4, it is shown that
X(u, w) can be realized in the space C(4) of real continuous functions on 4 which
vanish at 4,, i.e.

(1.4) Aimost all sample functions of X(u, w) are continuous.

For p = 2, the existence of the above Gaussian process X(u, w) is shown by Yeh [15]
and Kuelbs [10]. We will call a Gaussian process X(u, ) with the properties (1.1)-
(1.4) the p-parameter Gaussian process. We then examine the interrelationship
between the p-parameter Gaussian process and its reproducing kernel Hilbert space
H(R). Let L*(A) denote the space of Lebesgue square-integrable functions on A
with an inner product (f; g) = [, f(#)g(u)dp,(u) and norm || ||. We also define a
stochastic integral I(f) = [, f(u)dX(u, w) for feL*(4) with respect to the p-
parameter Gaussian process in two different ways and show that they are identical.
From this we show that the p-parameter Gaussian process has an a.s. uniformly
convergent orthonormal expansion.
Defining a Gaussian random set function by

(1.5) X(F, 0) = [, 1) dX(t, )

where Fe o/ and 1y is the indicator function of F, we define the multiple Wiener
integral (see It6 [6]) and show that any L?-functional of the process has an ortho-
gonal representation.

By appealing to the results obtained by Parzen [13], Kallianpur [9] and Oodaira
[11], we can simply deduce the results: a translation theorem, equivalence of
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