A MULTI-PARAMETER GAUSSIAN PROCESS¹

By Won Joon Park

Wright State University

1. Introduction. Let (Ω, \mathcal{F}, P) be a probability space and let A be the p-dimensional unit rectangle $(p \ge 2)$. We denote by (A, \mathcal{A}, μ_p) the ordinary Lebesgue measure space. Let $\{X(u, \omega) : u \in A\}$ be a Gaussian process defined on (Ω, \mathcal{F}, P) with the properties:

(1.1)
$$X(u, \omega) = 0$$
 a.s. for every u in A_0 where
$$A_0 = \{(u_1, \dots, u_p) \in A : u_j = 0 \text{ for some } j \text{ with } 1 \le j \le p\}.$$

(1.2)
$$E[X(u, \omega)] = \int_{\Omega} X(u, \omega) dP(\omega) = 0$$
 for every u in A .

(1.3)
$$E[X(u, \omega)X(v, \omega)] = \min(u_1, v_1) \cdots \min(u_p, v_p) = R(u, v)$$
 for every $u = (u_1, \dots, u_p)$ and $v = (v_1, \dots, v_p)$ in A .

By considering an expansion in terms of Haar functions on A, it is shown that $X(u, \omega)$ can be realized in the space C(A) of real continuous functions on A which vanish at A_0 , i.e.

(1.4) Almost all sample functions of $X(u, \omega)$ are continuous.

For p=2, the existence of the above Gaussian process $X(u,\omega)$ is shown by Yeh [15] and Kuelbs [10]. We will call a Gaussian process $X(u,\omega)$ with the properties (1.1)–(1.4) the p-parameter Gaussian process. We then examine the interrelationship between the p-parameter Gaussian process and its reproducing kernel Hilbert space H(R). Let $L^2(A)$ denote the space of Lebesgue square-integrable functions on A with an inner product $(f,g)=\int_A f(u)g(u)\,d\mu_p(u)$ and norm $||\cdot||$. We also define a stochastic integral $I(f)=\int_A f(u)\,dX(u,\omega)$ for $f\in L^2(A)$ with respect to the p-parameter Gaussian process in two different ways and show that they are identical. From this we show that the p-parameter Gaussian process has an a.s. uniformly convergent orthonormal expansion.

Defining a Gaussian random set function by

(1.5)
$$X(F,\omega) = \int_A 1_F(t) dX(t,\omega)$$

where $F \in \mathcal{A}$ and 1_F is the indicator function of F, we define the multiple Wiener integral (see Itô [6]) and show that any L^2 -functional of the process has an orthogonal representation.

By appealing to the results obtained by Parzen [13], Kallianpur [9] and Oodaira [11], we can simply deduce the results: a translation theorem, equivalence of

1582

Received November 10, 1969; revised March 18, 1970.

¹ This paper is based on a part of the author's Ph. D. thesis written under the direction of Professor G. Kallianpur at the University of Minnesota.