A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION BY ORDER STATISTICS¹

By M. M. Desu

State University of New York at Buffalo

- **0. Introduction.** Several results characterizing the exponential distribution have appeared in the literature in recent years (Basu [1], Crawford [2], Ferguson [3], Govindarajulu [4] and Tanis [6]). Many of these results are based on the independence of suitable functions of order statistics. Here a different type of theorem, which characterizes the exponential distribution, is given and the key idea is to present a function of the order statistics having the same distribution as the one sampled. As a consequence a result on the characterization of a power distribution is obtained.
- **1. The results.** Let X be a random variable with the distribution function $F(\cdot)$. Let (X_1, X_2, \dots, X_n) be a random sample from F and let $W = \min(X_1, X_2, \dots, X_n)$.

THEOREM. If $F(\cdot)$ is a nondegenerate distribution function, then for each positive integer n, nW and X are identically distributed if and only if $F(x) = 1 - \exp(-\lambda x)$, for $x \ge 0$, where λ is a positive constant.

PROOF. The distribution function of nW is given by

(1)
$$F_{nW}(w) = \Pr \{ W \le w/n \} = 1 - [1 - F(w/n)]^n.$$

It is easy to verify that $F_{nW}(w) = F_X(w) \equiv F(w)$ when

(2)
$$F(w) = 1 - \exp(-\lambda w), \quad w \ge 0$$
$$= 0 \quad w < 0.$$

The main task is to show that for real w

(3)
$$F_{nw}(w) = F(w) \Rightarrow F(w)$$
 is given by (2).

Let G(w) = 1 - F(w). Now $F_{nW}(w) = F(w)$ can be expressed as

(4)
$$G(nw) = G^n(w)$$
 for real w and integers $n \ge 1$.

From (4), it follows that $G(0) = G^n(0)$, and this implies that G(0) = 0 or G(0) = 1, since $0 \le G(w) \le 1$. We shall now show that G(0) = 1.

To prove this, let us assume that there is a negative number w_0 such that $G(w_0) < 1$. Then, as $n \to \infty$, $G^n(w_0) \to 0$ and $G(nw_0) \to 1$, contradicting (4). Thus, for all w < 0, $G(w) \ge 1$ and hence G(w) = 1, for w < 0. Since F is non-degenerate we cannot have G(w) = 0 for all $w \ge 0$, which implies that $G(w_1) > 0$

www.jstor.org

Received June 3, 1970; revised October 12, 1970.

¹This research was supported in part by National Institutes of Health Grant GM-14031. 837