ON A CLASS OF BIVARIATE DISTRIBUTIONS FOLLOWING A CERTAIN STOCHASTIC STRUCTURE¹

BY CHANDAN K. MUSTAFI

Indian Institute of Management, Calcutta

0. Introduction. Consider two independent random variables X, Y with E(X) = E(Y) = 0 and two other random variables X^* , Y^* following a Stochastic Structure:

(1)
$$X^* = AX + BY;$$
$$Y^* = CX + DY;$$

where A, B, C, D are nonzero constants.

Laha ([2], [4]) studied the problem of characterizing the distributions of X and Y through regression properties of X^* and Y^* . In particular, he showed that if AD = BC, $E(Y^* \mid X^*) = \beta X^*$ almost surely whatever may be the distributions of X and Y, where $\beta = DB^{-1}$. If $AD \neq BC$, both X and Y have symmetric stable distributions with the same characteristic exponent $\alpha(1 < \alpha \le 2)$, if and only if

(i)
$$E(Y^* \mid X^*) = \beta X^*$$
 for all $0 < |A| \le \delta$ for some $\delta > 0$ and

(ii)
$$\beta = (CA^{-1}\alpha_1 |A|^{\alpha} + DB^{-1}\alpha_2 |B|^{\alpha})$$

(2)
$$(\alpha_1 |A|^{\alpha} + \alpha_2 |B|^{\alpha})^{-1};$$

1. Some preliminary results. Suppose, X and Y are random vectors of order $p \times 1$ and $q \times 1$ respectively such that E(X) and E(Y) exist. $\varphi(U, V)$ is the joint

Received May 19, 1970; revised February 4, 1971.

¹ Research partially supported by NSF Grant No. GP24439 with Columbia University.