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ELFVING’S THEOREM AND OPTIMAL
DESIGNS FOR QUADRATIC LOSS!

By W. J. STUDDEN
Purdue University

1. Introduction. The purpose of this paper is to give a matrix analog of a geo-
metric result of Elfving in the theory of optimal design of experiments. The
connection with quadratic loss is indicated below.

Let f = (f;, ---,f,») denote m linearly independent continuous functions on a
compact set X and let 6 = (6,, ---, 6,,) denote a vector of parameters. For each
x € X an experiment can be performed. The outcome is a random variable y(x)
with mean value /(x) = Y, 0,f,(x) and a variance ¢ independent of x. (Primes
will denote transposes.) The functions f, ---, f,,, called the regression functions,
are assumed known while § = (0, -+, 0,,) and 62 are unknown. An experimental
design is a probability measure u defined on a fixed o-field of sets of X which
include the one point sets. In practice, the experimenter is allowed N uncorrelated
observations and the number of observations that he takes at each xe X is
“proportional” to the measure x. For a given u let

m; = my(p) = Iﬁf}d# and M(p) = “mij“'ir,lj=l’
The matrix M(u) is called the information matrix of the design.

Suppose p concentrates mass y; at the points x;, i = 1, ---, r and Nu; = n; are
integers. If N uncorrelated observations are made, taking n; observations at x;,
then the variance of the best linear unbiased estimate of af’ = Y ; a,0; is given by
62N 'aM ~(u)a’. The inverse M ~*(u) must be suitably defined if M(u) is singular.
A design u is called a-optimal if u minimizes V(a, p) = aM ~*(wa’. The following
geometric result was given by Elfving (1952); see also Karlin and Studden (1966).

THEOREM (Elfving). Let R denote the smallest convex set in Euclidean m-space
which is symmetric with respect to the origin and contains all of the vectors f(x) =
(f1(%), -+, f(%)), x € X. A design uq is a-optimal if and only if there exists a scalar
valued function ¢(x) satisfying |¢(x)| = 1 such that (i) | ¢(x)f(x)duo(x) = Ba for some
B and (ii) fa is a boundary point of R. Moreover Ba lies on the boundary of R if and
only if B* = v™! where v = min, V(a, p).

The quantity, analogous to V(a, 1), that we wish to consider is
(1.1) V(A,p) = tr AM ™Y (WA = tr M~ (w)AA’

where A is an m x k matrix and tr denotes the trace. We thus wish to minimize
the sum of quantities ¥(a, 1) where the a’s are given by the columns of 4.
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