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Rejoinder: Confidence as Likelihood
Yudi Pawitan and Youngjo Lee

We thank M. Lavine and J. Bjørnstad (LB) for their
comments. Following their notation, we start with a point
of agreement that the extended likelihood of (θ,ψ) is
Le(θ,ψ;y) ≡ pθ(y,ψ). Many properties of Fisher’s clas-
sical likelihood—most importantly, the invariance of the
likelihood ratio with respect to transformation of ψ—do
not apply immediately to the extended likelihood. With
its new characteristics and much wider reach, Le(θ,ψ;y)

merits the qualifier “extended.” B actually called it “gen-
eralized” or “general” likelihood. We further agree with
their equation (6) being the extended likelihood of (θ, u),
where u is the true status of the confidence interval, and
with the subsequent likelihood ratios for the normal exam-
ple. However, it is important to note that, without special
justification, one cannot meaningfully take ratios of ex-
tended likelihoods. Allowing such ratios implies that one
can find the maximum likelihood estimate by a joint max-
imization over the fixed and random parameters. But, due
to the lack of invariance, performing such a procedure on
an arbitrary scale of the random parameter can easily lead
to contradictions; see Chapter 4 in Lee, Nelder and Pawi-
tan (2017). This shows that, while the likelihood principle
guarantees the sound properties of the extended likelihood
in capturing evidence in the data, it does not by itself tell
us what to do.

Part of LB’s objection could be due to what they per-
ceive as lack of full information. In their summary, they
wrote “(4) does not account for the full model.” If u is the
true status of just a single confidence interval, correspond-
ing to a single value of α, then there is of course a loss
of information on θ . It is a major simplification, which is
nonetheless commonly done, to represent the uncertainty
of θ with a single confidence interval. But, in the first
instance, the issue is only a recognition that Le(u;y) is
an extended likelihood. If the confidence interval is based
on a sufficient estimate, then the full information can be
found in the full confidence density, which represents con-
fidence intervals for all values of α.

Even within the classical likelihood framework, with
both θ and ψ fixed parameters, one can still meaningfully
set up a marginal likelihood L(ψ;y) ≡ L(ψ;h(y)) based
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on a specially chosen statistic h(y) whose distribution is
free of θ . The marginal likelihood is needed when ψ is the
parameter of interest. There is a potential loss of informa-
tion from the use of marginal likelihood, on the parameter
ψ itself and certainly on θ , but there is no controversy
in calling the marginal L(ψ;y) a likelihood. Thus, in the
same vein, the extended likelihood Le(u;y) is a marginal
likelihood from Le(θ,u;y), based on the statistic U(y)

whose distribution happens to be free of θ . In LB’s nor-
mal example, Le(u = 1;y) = 0.95 is a confidence state-
ment that is free of θ .

In Section 3, LB state two requirements for a likelihood
function, which they claim are not satisfied by (4). The
first requirement is a model specification, which is natu-
rally necessary to give meaning to the parameter and to
compute any kind of likelihood. But the second require-
ment on “inferential aim” is qualitative and vague. For
example, can we not say that our inferential aim is just
to assess whether the observed confidence interval cov-
ers the true parameter, but not in the exact value of θ? LB
also state that “it’s experiments, not random variables, that
induce likelihood functions.” We find this statement self-
contradictory. All random variables trivially correspond
to the results of random experiments.

Consider the extended likelihood of ψ when there
is no unknown fixed parameter θ . Thus, Le(ψ;y) ≡
p(y,ψ) = p(y|ψ)p(ψ). Here, the classical likelihood
of ψ is L(ψ;y) = p(y|ψ). What is the classical likeli-
hood L(ψ) before observing y? It should be free of ψ ,
which can then be set to L(ψ) ≡ 1, so that on observ-
ing y the classical likelihood is then a correct update of
the constant likelihood. So, before observing y we have
Le(ψ) = L(ψ)p(ψ) = p(ψ). Hence, if we follow the
logic of extended likelihood, an unobserved random vari-
able does induce an extended likelihood. Avoiding the
notational and conceptual distinctions between the clas-
sical L(·) and the extended Le(·) will only lead to confu-
sion.

LB then present the standard example of the bino-
mial versus the negative binomial data, where the clas-
sical likelihoods are proportional, but the P-values or the
confidence distributions are different. They further write
(in their notation) “L1(v) = L2(v) ∝ 1.” But, in this dis-
crete case, this is incorrect. By definition, v1 ≡ C1(t, θ)

and v2 ≡ C2(t, θ). Having C1 �= C2 means Le1(v;y) �=
Le2(v;y); the random variables V1 and V2 do not even
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