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1. INTRODUCTION

We congratulate the authors on their exciting paper,
which introduces a novel idea for assessing the estimation
bias in causal estimates. Doubly robust estimators are now
part of the standard set of tools in causal inference, but a
typical analysis stops with an estimate and a confidence
interval. The authors give an approach for a unique type
of model-checking that allows the user to check whether
the bias is sufficiently small with respect to the standard
error, which is generally required for confidence intervals
to be reliable.

We begin our comments by looking at an example of a
simple functional.

2. EXPECTED DENSITY EXAMPLE

In this section, we illustrate the main ideas in the paper
by applying them to a simpler functional. This allows us
to understand better some of the critical insights of Liu,
Mukherjee and Robins (2020). In particular, we consider
the classic expected density functional

ψ = E
{
p(X)

} =
∫

p(x)2 dx.

This functional has been studied extensively, with estima-
tion and inference by now well understood (Bickel and
Ritov, 1988, Birgé and Massart, 1995). Further, although
it is simple, it has many of the nice properties of more
complicated functionals like the expected conditional co-
variance or average treatment effect.

An analog of a doubly robust estimator of ψ is the one-
step or first-order corrected estimator given by

ψ̂ = 2

n

n∑
i=1

p̂(Xi) −
∫

p̂(x)2 dx,
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where p̂ is an initial pilot estimator of the density p,
which for simplicity is based on an independent auxiliary
sample of size n. The rest of this analysis is conditioned
on this auxiliary sample.

To fix ideas, we briefly summarize some results regard-
ing the estimation of ψ and the estimator ψ̂ . A simple
calculation shows that we may write

ψ = ψ̂ − 2

(
1

n

n∑
i=1

p̂(Xi) −E[p̂]
)

+
∫

(p̂ − p)2.

In rough terms, if
∫
(p̂ − p)2 is op(1/

√
n) then the first-

order estimator achieves parametric rates (and is semi-
parametrically efficient). As an example, over classical
Sobolev or Hölder smoothness classes, the first-order esti-
mator is efficient if s > d/2, where s denotes the smooth-
ness parameter, and d the dimension of the data. On the
other hand, it is well known that a second-order U-statistic
estimator (Laurent, 1996) is semiparametrically efficient
if s > d/4 and otherwise achieves the minimax rate of
n−4s/(4s+d).

To understand the work of Liu, Mukherjee and Robins
(2020), suppose we write our initial estimate as

p̂ =
∞∑

j=1

θ̂j φj ,

where the φj form an orthonormal basis with respect to
the Lebesgue measure. Then for p = ∑

j θjφj a straight-
forward calculation shows that the conditional bias (given
the auxiliary sample) is

Bias = E(ψ̂ − ψ) = −
∫ {

p̂(x) − p(x)
}2

dx

= −
∞∑
i=1

(θ̂j − θj )
2.

Note that this is the bias, not the squared bias; therefore
for this functional, the standard first-order estimator has
the monotone bias property. We can decompose this bias
as

−Bias =
k∑

j=1

(θ̂j − θj )
2

︸ ︷︷ ︸
Biask

+ ∑
j>k

(θ̂j − θj )
2

︸ ︷︷ ︸
Truncation Bias

.

540


