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There is a gap in the proof of (3.19) in [1, Theorem 3.6] in that the constant C14 in [1, (3.22)] depends on r1/αλ

rather than λ > 0 and so when applying [1, Lemma 3.4] it gives a new A0 depending also on r . This gap affects
only the proof of (1.16) of [1, Theorem 1.1(v)] (or [1, (3.23)]). The rest of [1, Theorem 3.6] including the estimates
(3.20)–(3.21), (3.6) and (3.8) hold without any issue. The proof of (3.19) in [1, Theorem 3.6] works if we drop λ and
replace Mb,λ defined in [1, (1.13)] by ‖b‖∞.

In this errata, instead of establishing [1, (3.19)], we show directly that the estimate (1.16) of [1, Theorem 1.1(v)]
hold for every λ > 0. We point out that all the main results stated in the Introduction of [1] remain true.

First note that by Lemma 0.1 below, Lemmas 3.1 and 3.4, Theorems 3.6 and 3.7 of [1] hold for λ = +∞ with (3.2),
(3.11), (3.12), (3.19) and (3.23) being replaced by
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respectively, where the constant c is the one in Lemma 0.1 and that the constant A0 in [1, Lemma 3.4] can be chosen
to be smaller than 1/(2C12). This gives the existence and uniqueness of the fundamental solution qb(t, x, y) and all
the stated properties in [1, Theorem 1.1] except that we need to replace pMb,λ

by p‖b‖∞ in the estimate [1, (1.16)].
For a ≥ 0, denote by pa(t, x, y) the fundamental solution of �α/2 + a�β/2. Recall that for each λ > 0 and a ≥ 0,

fa,λ(t, x, y) is defined as in [1, (2.6)], and that fa,∞(t, x, y) = f0(t, x, y), which is given by [1, (2.1)].
By a similar argument as [1, Lemma 2.5], one obtains the following inequality.

Lemma 0.1. There exists c = c(d,α,β) > 0 such that for all t ∈ (0,1] and x, y ∈R
d ,

∫ t
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∫
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p1(t − s, x, z)f0(s, z, y) dz ds ≤ cp1(t, x, y).


