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Beyond the Valley of the Covariance
Function
Daniel Simpson, Finn Lindgren and Håvard Rue

1. INTRODUCTION

Multivariate models are under-represented in the lit-
erature on spatial statistics. There is a basic reason for
this: univariate models are sufficiently complicated to
keep us busy. Genton and Kleiber have done a fabulous
job compiling and investigating the available models,
with a focus on the important class of models that they,
with collaborators, introduced. This paper gives a solid
state of the art and points out just how many holes there
are in the theory and practice associated with these
fields. This gives us licence to point out some other
holes and to suggest some important directions for the
future.

2. THERE IS POWER IN A SPECTRUM

If we were to quibble about one thing in Genton
and Kleiber’s paper, it would be that we disagree over
the extent to which the class of multivariate GRFs has
been categorized. Note that this is different from ex-
plicitly constructing valid cross-covariance functions!
To wit, if a multivariate GRF has a spectral represen-
tation, the spectral representation given in Section 1.2
completely characterizes the class of stationary multi-
variate random fields that admit an absolutely contin-
uous spectral measure. This represents a large chunk
of interesting GRFs. We note that the paper, by re-
stricting the cross-spectral densities to be real, implic-
itly assumes that Cij (h) = Cij (−h), when the minimal
necessary requirement is only that Cij (h) = Cji(−h),
which allows for phase differences between the model
components. The representation can then be employed
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constructively as follows. Let ω → S(ω) be a map-
ping from R

d to the set of Hermitian nonnegative defi-
nite matrices, the elements of which the cross-spectral
densities, denoted fij in the paper, are here subject
to fij (ω) = fji(ω). Then, for any complex, matrix-
valued function L(ω) such that Lij (ω) = Lij (−ω) and
S(·) = L(·)L(·),

x(s) =
∫
Rd

L(ω)eis·ω dW̃(ω)

(1)
=

∫
Rd

∫
Rd

L(ω)ei(s−s′)·ω dω dW
(
s′),

where dW̃(·) ∈ C
p and dW(·) ∈ R

p are Gaussian
white noise processes on R

d understood as random
measures with dW̃i(ω) = dW̃i(−ω), E[dW̃(ω) ·
dW̃(ω′)] = δ(ω − ω′)Idω, and E[dW(s) dW(s′)] =
δ(s − s′)Ids (Adler and Taylor, 2007; Lindgren, 2012).
This representation only covers multivariate GRFs
with absolutely continuous spectral measures; how-
ever, the same procedure applies to fields with an
atomic spectral representation. The abstract feature
that is hiding in all of this specificity is that we are
explicitly constructing a square root of the multivariate
covariance operator and using this square root to filter
the multivariate white noise. On a compact domain, the
covariance operator is a compact, trace class operator,
and so this square root is well defined using the usual
functional calculus.

Another reason to further emphasize this spectral
representation is that it is not only constructive in its
own right, but also useful when transformed back to
the nonspectral domain. Kernel convolution methods
(Higdon, 1998) have a storied history in univariate
spatial statistics and their generalization to the multi-
variate case is straightforward (Simpson, Lindgren and
Rue, 2012; Bolin and Lindgren, 2013). Their advan-
tage is that it is never necessary to identify the spec-
trum of the process or, in fact, the cross-covariance
structure. Rather, for any L2 matrix-valued function
K(·, ·), x(s) = ∫

K(s, s′) dW(s′) is a valid mutlivari-
ate GRF, which can be approximated by (carefully) ap-
proximating the corresponding integral with a sum. In
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