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1. INTRODUCTION

I wish to congratulate Professor Imbens on a lu-
cid and erudite review of the instrumental variable lit-
erature. The paper contrasts an econometric view of
instrumental variable models, where treatment con-
founding is due to agents rationally choosing an op-
timal treatment for their situation, and the statistical
view, where treatment confounding arises due to non-
compliance, unobserved baseline differences between
individuals, or other such issues.

While the paper does an admirable job describing
the statistics view of the instrumental variables based
on the potential outcome model of Neyman and Ru-
bin, it does not much discuss the growing statistics lit-
erature on causal graphical models, except to mention
that causal graphs are a useful tool for displaying the
exclusion restriction assumption crucial for the use of
instrumental variables.

I would like to give a brief and hopefully comple-
mentary account of how causal graphical models serve
to clarify and help address the issues of confounding
(what Heckman calls the selection problem) that make
causal inference from observational data such a chal-
lenging endeavor.

2. GRAPHS AS A GENERAL METHOD FOR
DEALING WITH CONFOUNDING

Causal inference in statistics has been greatly influ-
enced by Neyman’s idea of explicitly representing in-
terventions or forced treatment assignments on the out-
come (Neyman, 1923), and by Rubin’s idea of using
the stable unit treatment value assumption (SUTVA)
and ignorability assumptions to equate potential out-
come parameters with functionals of the observed data
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(Rubin, 1974). Professor Imbens discusses these ideas
at length in the paper. The essence of Rubin’s method
is that assumptions on potential outcome random vari-
ables allow one to properly adjust for the presence of
confounding. Unfortunately, in complex, possibly lon-
gitudinal settings it is not easy to see what assumptions
are needed, or whether it is even possible to identify pa-
rameters of interest as functionals of observed data. For
this task, graphical causal models, first used by Wright
in the context of animal genetics (Wright, 1921), and
expanded into a general methodology for causal infer-
ence by Spirtes, Glymour and Scheines (1993), Pearl
(2000), Robins (1986, 1997), and others have proven
to be invaluable.

Consider Figure 1(a), where vertices represent ran-
dom variables of interest: a treatment A, an outcome
Y , and a source of unobserved confounding C (lightly
shaded in the graph to represented unobservability).
Following Neyman, we quantify the causal effect of A

on Y by means of a function of the distribution of the
potential outcome Y(a) (Y after we force A to a value
a). For instance, we may use the average causal ef-
fect (ACE): E[Y(a)] − E[Y(a′)], where a is the active
treatment value, and a′ is the baseline treatment value.
We are interested in using observed data to make in-
ferences about such effects, which entails dealing with
confounding in some way. The assumptions underly-
ing this graph which we will use can be expressed in
terms of potential outcomes if desired. For example,
the finest fully randomized causally interpretable struc-
tured tree graph (FFRCISTG) model of Robins (1986)
corresponding to this graph states that for all value
assignments a and c to A and C, random variables
C, A(c) and Y(a, c) are mutually independent, while
the nonparametric structural equation model with in-
dependent errors (NPSEM-IE) of Pearl (2000) corre-
sponding to this graph states that for all value assign-
ments a, c and c′ to A and C, random variables C, A(c)

and Y(c′, a) are mutually independent. Note that the
former set of assumptions can be viewed as a kind of
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