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Claudio Fuentes and George Casella

We congratulate Morris and Tang for an interesting
addition to empirical Bayes methods, and for tackling
a difficult and nagging problem in variance estimation.
The ADM adjustment appears to bring on interesting
properties, not just in variance estimation but also in
estimation of the means. In this discussion we want to
focus on the latter topic, and see how the ADM-derived
estimators of a normal mean perform in a decision-
theoretic way. To facilitate this we will stay with the
simple model

yi |θi ∼ N(θi,V ), θi ∼ N(0,A).(1)

1. THE JAMES–STEIN ESTIMATOR AS
GENERALIZED BAYES (NOT!)

We first address the comment of Morris and Tang in
Section 2.5, that the prior A ∼ Unif(0,∞) is strongly
suggested because the James–Stein estimator is the
posterior mean if we take A ∼ Unif(−V,∞). Profes-
sor Morris has noted this before, and in the interest of
understanding, we want to show this calculation and
comment on its relevance.

Writing y = (y1, . . . , yk) and θ = (θ1, . . . , θk), the
posterior expected loss from model (1), with the A ∼
Unif(−V,∞) prior, is∫ ∞

−V

∫
�p

|θ − δ(y)|2
(2)

· e−|y−θ |2/(2V )

(2πV )k/2

e−|θ |2/(2A)

(2πA)k/2 dθ dA,

and factoring the exponent in (2) and writing B =
V/(V + A) shows that

θ |y,A ∼ N
(
(1 − B)y,V (1 − B)

)
,
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A|y ∼
(

1

V + A

)k/2

e−(1/(2(V +A)))|y|2 .

The Bayes rules is the posterior mean, which we can
calculate as

E(θ |y) = E[E(θ |y,A)]
= E[(1 − B)y|y] = [1 − E(B|y)]y.

We now, very carefully, calculate E(B|y), yielding

E(B|y) ∝
∫ ∞
−V
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V

V + A

)(
1

V + A

)k/2

· e−(1/(2(V +A)))|y|2 dA

= V

∫ ∞
1/V

tk/2−1e−t |y|2/2 dt

+ V

∫ 1/V

0
tk/2−1e−t |y|2/2 dt,

where we make the transformation t = 1/(V +A), with
the first integral coming from A ∈ (−V,0). Noting that
the integrand is the kernel of a chi-squared density, we
finally have

E(B|y) ∝ V �(k/2)2k/2

(|y|2)k/2 [P(χ2
k ≥ |y|2/V )

(3)
+ P(χ2

k ≤ |y|2/V )],
where χ2

k is a chi-squared random variable with k

degrees of freedom. Since the chi-squared probabili-
ties sum to 1, normalizing this expectation (dividing

by �(k/2−1)2k/2−1

(|y|2)k/2−1 ) results in E(B|y) = V (k − 2)/|y|2,
yielding the James–Stein estimator. There are a num-
ber of things to note:

1. If this were a valid calculation, it would contra-
dict such important papers as Brown (1971) and Straw-
derman and Cohen (1971), which provided complete
characterizations of admissible generalized Bayes esti-
mators.
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