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Comment on Article by Hogg et al.

Nick Hengartner∗

The authors are to be congratulated for a well writing introduction to the analysis
of Small Angle Neutron Scattering (SANS) experiments datasets. These experiments
provide a powerful tool to explore the ferromagnetic properties of thin films and nano-
particles. The presented modeling framework for joint calibration data and experimental
data is timely. It represents a paradigm shift from current established analysis practices
and proposes a more principled approach to extract signal in SANS datasets. Better
analysis methods are needed by experimentalists vying to measure signals ever more
obscured by noise. As such, this papers answer Rutherford’s call for better experiments
to alleviate the need of statistics1 by offering better statistics to analyze an existing
experiment.

There are three aspects of SANS data analysis worth further comments: the need to
model the signal in the space of the observations, ongoing calibration of the instrument,
and a look at designing future SANS experiments.

Modeling. Raw SANS experimental data consist of pixel counts Nx,y in the xy-
plane, whose intensity is related to the scattering vector ~Q (see Figure 5 in Hogg et al.
(2010)). Standard analysis (see Kline (2006) for example), transforms the xy-plane into
~Q before fitting the model by minimum χ2. A better approach, advocated in this paper,
is to transform the model defined as a function of ~Q into an expectation counts λx,y in
each pixel in the xy-plane.

There are several advantages to bringing the model into the space of observable
data. First, it enables either a Bayesian or maximum likelihood type analysis that
take advantage of the Poisson assumption for the raw pixel counts. Second, it makes
possible to graphically explore the goodness-of-fit of the estimated model by displaying
the residuals

Rx,y =
√

Nx,y −
√

λ̂x,y.

Finally, bootstrap samples for the data at hand are easily generated by drawing, for
each pixel, the random variables

Mxy|Nxy ∼ Binomial(Nxy, p),

for some p ∈ (0, 1). Since marginally Mxy is Poisson distributed with attenuated in-
tensity pλxy, one can analyze that data in the same way as the original counts. And
since Nxy −Mxy is Poisson distributed with mean (1− p)λxy, independent of Mxy, this
opens the door to Bayesian model checking using the inferred predictive distribution for
Nxy −Mxy.
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