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Comments on Article by Yin

Ciprian M. Crainiceanu∗

Inferential methods for Generalized Linear Mixed Models (GLMMs) are under in-
tense methodological development because they: 1) are widely applicable; and 2) raise
non-trivial technical and inferential challenges. The Generalized Method of Moments
(GMM) (Hansen (1982); Newey and West (1987)) provides a powerful and robust set of
inferential tools for GLMMs, especially when the likelihood formulation is difficult and
interest is centered on the fixed effects parameters.

The paper by Yin (2009) is an important contribution to this literature. The main
idea of the paper is to provide a simple Bayesian framework for what I considered to
be a frequentist method, par excellence. I found the paper thought provoking, fresh
and definitely worthy of discussion. Below I summarize my reactions and comments
and provide a set problems that could be, but are not currently, addressed by this
methodology.

1 Why?

The most important question in my mind after reading the paper was “Why should we
use Bayesian GMM instead of GMM?” Simulations seem to indicate that both methods
produce similar results, with the Bayesian methodology requiring more computational
effort. One answer that I do not particularly like is “Because we can”. Another possible
answer could be that in some data sets with a smaller number of clusters the posterior
distribution π̃(β|y) ∝ L̃(y|β)π(β) might not be well approximated by a normal. In such
a context, the next natural step would be to consider the sampling variability of the
data by conducting a nonparametric bootstrap of the clusters. Pooled analyses using
Bayesian GMM and GMM could then be compared. Some applications and simulations
supporting these ideas would add credibility to the proposed methods.

2 What?

The approach proposed by Yin is to treat the quadratic objective function

Qn(β) = UT
n (β)Σ−1

n (β)UT
n (β)

as an approximation of minus twice the log of the conditional likelihood L(y|β). More
precisely, the author replaced the unknown L(y|β) by the approximate likelihood L̃(y|β) =
exp{−Qn(β)/2}. When observations are not clustered Un(β) =

∑n
i=1 Ui(β)/n, where

Ui(β) = Div
−1
i (yi−µi), Di = ∂µi/∂β is the vector of derivatives of the subject i-specific

mean with respect to the model parameters, and vi = var(yi|Zi) is the conditional vari-
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